Open Access Open Access  Restricted Access Subscription or Fee Access

Facile Synthesis of Highly Uniform Selenium Nanoparticles with Antibacterial Activity on Bacillus subtilis

Mahsa Vahdati Vahdati, Tahereh Tohidi Moghadam

Abstract


In the light of diverse applications of Selenium nanoparticles in biomedical applications, a facile procedure has been developed to synthesize highly stable and monodisperse nanoparticles with Polysorbate 20 at room temperature. Transmission electron microscopy analysis revealed that the Selenium nanoparticles (Se NPs) were spherical in shape with uniform size of 43 nm. The antibacterial activity of Se NPs was investigated against Bacillus subtilis as a model gram-positive bacteria which showed notable antibacterial activity. Results of this investigation suggest utilization of Se NPs in the next generation of nanohybrid systems with promising antibacterial efficiency.

Keywords


Antibacterial properties, monodispersity, nanohybrid systems, selenium nanoparticles

Full Text:

PDF

References


Gangadoo, S.; Stanley, D.; Hughes, R. J.; Moore, R. J.; Chapman, J. The Synthesis and Characterisation of Highly Stable and Reproducible Selenium Nanoparticles. Inorg. Nano-Metal Chem. 2017, 47 (11), 1568–1576.

Skalickova, S.; Milosavljevic, V.; Cihalova, K.; Horky, P.; Richtera, L.; Adam, V. Selenium Nanoparticles as a Nutritional Supplement. Nutrition. 2017, pp 83–90. https://doi.org/10.1016/j.nut. 2016.05.001.

Tohidi Moghadam, T.; Ranjbar, B.; Khajeh, K.; Etezad, S. M.; Khalifeh, K.; Ganjalikhany, M. R. Interaction of Lysozyme with Gold Nanorods: Conformation and Activity Investigations. Int. J. Biol. Macromol. 2011, 49 (4), 629–636. https://doi.org/10.1016/j.ijbio mac.2011.06.021.

Subburaman, C.; Sundar, K.; Muthukumaran, A. Reducing Agents

Influence the Shapes of Selenium Nanoparticles (SeNPs) and Subsequently Their Antibacterial and Antioxidant Activity. Mater. Res. Express 2019.

Abdelouas, A.; Gong, W. L.; Lutze, W.; Shelnutt, J. A.; Franco, R.; Moura, I. Using Cytochrome c 3 to Make Selenium Nanowires. Chem. Mater. 2000, 12 (6), 1510–1512.

Wang, Q.; Mejia Jaramillo, A.; Pavon, J. J.; Webster, T. J. Red Selenium Nanoparticles and Gray Selenium Nanorods as Antibacterial Coatings for PEEK Medical Devices. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 104 (7), 1352–1358.

Krishnaraj, C.; Muthukumaran, P.; Ramachandran, R.; Balakumaran, M. D.; Kalaichelvan, P. T. Acalypha Indica Linn: Biogenic Synthesis of Silver and Gold Nanoparticles and Their Cytotoxic Effects against MDA-MB-231, Human Breast Cancer Cells. Biotechnol. Reports 2014, 4, 42–49.

Kojouri, G.; Arbabi, F.; Mohebbi, A. The Effects of Selenium Nanoparticles (SeNPs) on Oxidant and Antioxidant Activities and Neonatal Lamb Weight Gain Pattern. Comp. Clin. Path. 2019, 1–6.

Rao, L.; Ma, Y.; Zhuang, M.; Luo, T.; Wang, Y.; Hong, A. Chitosan-Decorated Selenium Nanoparticles as Protein Carriers to Improve the in Vivo Half-Life of the Peptide Therapeutic BAY 55–9837 for Type 2 Diabetes Mellitus. Int. J. Nanomedicine 2014, 9, 4819.

Srivastava, P.; Kowshik, M. Anti-Neoplastic Selenium Nanoparticles from Idiomarina Sp. PR58–8. Enzyme Microb. Technol. 2016, 95, 192–200.

Boroumand, S.; Safari, M.; Shaabani, E.; Shirzad, M.; Faridi-Majidi, R. Selenium Nanoparticles: Synthesis, Characterization and Study of Their Cytotoxicity, Antioxidant and Antibacterial Activity. Mater. Res. Express 2019.

Nazıroğlu, M.; Muhamad, S.; Pecze, L. Nanoparticles as Potential Clinical Therapeutic Agents in Alzheimer’s Disease: Focus on Selenium Nanoparticles. Expert Rev. Clin. Pharmacol. 2017, 10 (7), 773–782.

Do, H.; Kim, I.-S.; Jeon, B. W.; Lee, C. W.; Park, A. K.; Wi, A. R.; Shin, S. C.; Park, H.; Kim, Y.-S.; Yoon, H.-S. Structural Understanding of the Recycling of Oxidized Ascorbate by Dehydroascorbate Reductase (OsDHAR) from Oryza Sativa L. Japonica. Sci. Rep. 2016, 6, 19498.

Kaasalainen, M.; Aseyev, V.; von Haartman, E.; Karaman, D. Ş.; Mäkilä, E.; Tenhu, H.; Rosenholm, J.; Salonen, J. Size, Stability, and Porosity of Mesoporous Nanoparticles Characterized with Light Scattering. Nanoscale Res. Lett. 2017, 12 (1), 74.

Ashrafpour, S.; Tohidi Moghadam, T. Interaction of Silver Nanoparticles with Lysozyme: Functional and Structural Investigations. Surfaces and Interfaces 2017. https://doi.org/10.1016/j.surfin. 2017.09.010.

Tran, P.A.; O’Brien-Simpson, N.; Reynolds, E.C.; Pantarat, N.; Biswas, D.P. O’Connor, A. J. Low Cytotoxic Trace Element Selenium Nanoparticles and Their Differential Antimicrobial Properties

against S. aureus and E. coli. Nanotechnology 2015. https://doi.org/10.1 088/0957–4484/27/4/045101.

Nguyen, T. H. D.; Vardhanabhuti, B.; Lin, M.; Mustapha, A. Antibacterial Properties of Selenium Nanoparticles and Their Toxicity to Caco-2 Cells. Food Control 2017, 77, 17–24.

Vahdati, M.; Tohidi Moghadam, T. Synthesis and Characterization of Selenium Nanoparticles- Lysozyme Nanohybrid System with Synergistic Antibacterial Properties. Sci. Rep. 2020. https://doi.org/ 10.1038/s41598–019–57333–7.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Research & Reviews: A Journal of Biotechnology