Open Access Open Access  Restricted Access Subscription or Fee Access

Towards the Wearable Cardiorespiratory Sensors for Aerospace Applications

Chandan Sheikder, Md Musa Haque


Developing Air Traffic Management (ATM) & avionics human-machine framework ideas need real-time surveillance of the human operator to enable unique job assessment & system adaptability characteristics. To implement these advanced notions, a set of sensors capable of consistently and correctly capturing neurophysiological data is required. The scientific verification & performance evaluation of a cardio-respiratory sensor with ATM & avionics applications are presented in this research. The processed physiological measures from the specified commercial device are validated against clinical-grade equipment. Unlike previous studies that just looked at physical effort, this characterization looked at cognitive workload as well, which provides some extra hurdles to cardiorespiratory monitoring. The paper also discusses how to quantify ambiguity in the cognitive and somatic estimation process based on the ambiguity in the supplied cardio-respiratory measures. The sensor validation & uncertainty propagation findings confirm the commercialized cardiorespiratory sensor's fundamental compatibility for the planned aircraft application but emphasize the comparatively low performance within respiratory measures throughout a purely mental task.

Full Text:



M. Traoré and C. Hurter, “Exploratory study with eye tracking devices to build interactive systems for Air Traffic Controllers,” Proc. Int. Conf. Human-Computer Interact. Aerospace, HCI-Aero 2016, Sep. 2016, doi: 10.1145/2950112.2964584.

B. Amos, … B. L.-C. S. of, and undefined 2016, “Openface: A general-purpose face recognition library with mobile applications,”

A. Fydanaki and Z. Geradts, “Evaluating OpenFace: an open-source automatic facial comparison algorithm for forensics,” Forensic Sci. Res., vol. 3, no. 3, pp. 202–209, Jul. 2018, doi: 10.1080/20961790.2018.1523703.

H. Fayek, M. Lech, L. C.-N. Networks, and undefined 2017, “Evaluating deep learning architectures for speech emotion recognition,” Elsevier, 2017, doi: 10.1016/j.neunet.2017.02.013.

M. Vukovic, V. Sethu, J. Parker, … L. C.-I. J. of, and undefined 2019, “Estimating cognitive load from speech gathered in a complex real-life training exercise,” Elsevier.

Z. Huang, M. Dong, Q. Mao, … Y. Z.-22nd A. international conference, and undefined 2014, “Speech emotion recognition using CNN,”, pp. 801–804, Nov. 2014, doi: 10.1145/2647868.2654984.

W. Lim, D. Jang, T. L.-2016 A.-P. signal and information, and undefined 2016, “Speech emotion recognition using convolutional and recurrent neural networks,”

N. Pongsakornsathien, Y. Lim, A. Gardi, S. H.- Sensors, and undefined 2019, “Sensor networks for aerospace human-machine systems,”

Y. Lim, A. Gardi, N. Pongsakornsathien, R. S.- Measurement, and undefined 2019, “Experimental characterisation of eye-tracking sensors for adaptive human-machine systems,” Elsevier.

D. Nunan, G. Donovan, … D. J.-M. S. in, and undefined 2009, “Validity and reliability of short-term heart-rate variability from the Polar S810,”, doi: 10.1249/MSS.0b013e


J. Hailstone and A. E. Kilding, “Reliability and validity of the ZephyrTM BioHarnessTM to measure respiratory responses to exercise,” Meas. Phys. Educ. Exerc. Sci., vol. 15, no. 4, pp. 293–300, Oct. 2011, doi: 10.1080/1091367X.2011.615671.

G. Nazari, J. MacDermid, … K. S.-T. J. of, and undefined 2019, “Reliability of Zephyr Bioharness and Fitbit Charge measures of heart rate and activity at rest, during the modified Canadian aerobic fitness test, and recovery,”

J. Johnstone, P. Ford, … G. H.-J. of sports, and undefined 2012, “BioHarnessTM multivariable monitoring device: part. I: validity,”

“BioharnessTM multivariable monitoring device: part. II: reliability,”

D. L. Smith, J. M. Haller, B. A. Dolezal, C. B. Cooper, and P. C. Fehling, “Evaluation of a wearable physiological status monitor during simulated fire fighting activities,” J. Occup. Environ. Hyg., vol. 11, no. 7, pp. 427–433, Jul. 2014, doi: 10.1080/15459624.2013.875184.

S. Flanagan, B. Comstock, … W. D.-T. J. of, and undefined 2014, “Concurrent validity of the Armour39 heart rate monitor strap,”

B. A. Dolezal, D. M. Boland, J. Carney, M. Abrazado, D. L. Smith, and C. B. Cooper, “Validation of heart rate derived from a physiological status monitor-embedded compression shirt against criterion ECG,” J. Occup. Environ. Hyg., vol. 11, no. 12, pp. 833–839, Dec. 2014, doi: 10.1080/15459624.2014.925114.

J. Rawstorn, N. Gant, I. Warren, … R. D.-J. rehabilitation, and undefined 2015, “Measurement and data transmission validity of a multi-biosensor system for real-time remote exercise monitoring among cardiac patients,”

G. Nazari, P. Bobos, J. C. MacDermid, K. E. Sinden, J. Richardson, and A. Tang, “Psychometric properties of the Zephyr bioharness device: A systematic review,” BMC Sports Sci. Med. Rehabil., vol. 10, no. 1, 2018, doi: 10.1186/S13102-018-0094-4.

A. Galli, C. Narduzzi, G. G.-I. T. on, and undefined 2017, “Measuring heart rate during physical exercise by subspace decomposition and Kalman smoothing,”

D. B. Kaber, C. M. Perry, N. Segall, and M. A. Sheik-Nainar, “Workload state classification with automation during simulated air traffic control,” Int. J. Aviat. Psychol., vol. 17, no. 4, pp. 371–390, 2007, doi: 10.1080/10508410701527860.

J. Vogt, T. Hagemann, M. K.-J. of psychophysiology, and undefined 2006, “The impact of workload on heart rate and blood pressure in en-route and tower air traffic control.,”

M. Taj-Eldin, C. Ryan, B. O’Flynn, P. G.- Sensors, and undefined 2018, “A review of wearable solutions for physiological and emotional monitoring for use by people with autism spectrum disorder and their caregivers,”, doi: 10.3390/s18124271.

G. F. Wilson, “An Analysis of Mental Workload in Pilots During Flight Using Multiple Psychophysiological Measures,” Int. J. Aviat. Psychol., vol. 12, no. 1 SPEC, pp. 3–18, 2002, doi: 10.1207/S15327108IJAP1201_2.

M. A. Bonner and G. F. Wilson, “Heart Rate Measures of Flight Test and Evaluation,” Int. J. Aviat. Psychol., vol. 12, no. 1 SPEC, pp. 63–77, 2002, doi: 10.1207/S15327108IJAP1201_6.

T. Lahtinen, J. Koskelo, T. L.- Aviation, undefined space, undefined and, and undefined 2007, “Heart rate and performance during combat missions in a flight simulator,”

T. Hankins, G. W.- Aviation, undefined space, and environmental, and undefined 1998, “A comparison of heart rate, eye activity, EEG and subjective measures of pilot mental workload during flight.,”

N. Pongsakornsathien et al., “Performance Characterisation of Wearable Cardiac Monitoring Devices for Aerospace Applications,”, 2019, doi: 10.1109/MetroAeroSpace.


Y. Lim, A. Gardi, R. Sabatini, … S. R.-P. in A., and undefined 2018, “Avionics human-machine interfaces and interactions for manned and unmanned aircraft,” Elsevier.

Y. Lim, S. Ramasamy, A. Gardi, T. Kistan, and R. Sabatini, “Cognitive Human-Machine Interfaces and Interactions for Unmanned Aircraft,” J. Intell. Robot. Syst. Theory Appl., vol. 91, no. 3–4, pp. 755–774, Sep. 2018, doi: 10.1007/S10846-017-0648-9.

J. Liu, A. Gardi, S. Ramasamy, Y. Lim, and R. Sabatini, “Cognitive pilot-aircraft interface for single-pilot operations,” Elsevier, 2016, doi: 10.1016/j.knosys.2016.08.031.

L. Ivonin, H. M. Chang, W. Chen, and M. Rauterberg, “Automatic recognition of the unconscious reactions from physiological signals,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7946 LNCS, pp. 16–35, 2013, doi: 10.1007/978-3-642-39062-3_2.

M. M. Bradley, L. Miccoli, M. A. Escrig, and P. J. Lang, “The pupil as a measure of emotional arousal and autonomic activation,” Psychophysiology, vol. 45, no. 4, pp. 602–607, Jul. 2008, doi: 10.1111/J.1469-8986.2008.00654.X.

O. Kwon, J. Jeong, H. Kim, … I. K.-H., and undefined 2018, “Electrocardiogram sampling frequency range acceptable for heart rate variability analysis,”

J. H. Kim, R. Roberge, J. B. Powell, A. B. Shafer, and W. Jon Williams, “Measurement accuracy of heart rate and respiratory rate during graded exercise and sustained exercise in the heat using the zephyr BioHarness TM,” Int. J. Sports Med., vol. 34, no. 6, pp. 497–501, 2013, doi: 10.1055/S-0032-1327661.

I. C. S. L. M. S.-A. S. 802. 1. and undefined 1999, “Wireless LAN medium access control (MAC) and physical layer (PHY) specifications,”

“BIOHARNESS WITH ACQKNOWLEDGE BioHarness Data Logger and Telemetry Physiology Monitoring System BioHarness-5 Data Logger and Telemetry Physiology Monitoring System (five-system package).”

G. Simonetta, N. Aziz, K. F.-P. J. of Physiology, and undefined 2006, “Recent developments in data recording systems for Physiology,”, vol. 2, no. 1, 2006.

P. Tuset-Peiró, F. Vázquez-Gallego, J. M.- Electronics, and undefined 2019, “Experimental interference robustness evaluation of ieee 802.15. 4-2015 oqpsk-dsss and sun-ofdm physical layers for industrial communications,”

“Kothe, C. Lab streaming Layer (LSL). In Proceedings... - Google Scholar.” .

S. Miyamoto, H. Ichihashi, K. Honda, and H. Ichihashi, Algorithms for fuzzy clustering. 2008.

J. J.-I. transactions on systems, undefined man, undefined and, and undefined 1993, “ANFIS: adaptive-network-based fuzzy inference system,”

P. Jorna et al., “Effects of mental workload on physiological and subjective responses during traffic density monitoring: A field study,” Elsevier, doi: 10.1016/j.apergo.2015.07.009.

A. C. Marinescu, S. Sharples, A. C. Ritchie, T. Sánchez López, M. McDowell, and H. P. Morvan, “Physiological Parameter Response to Variation of Mental Workload,” Hum. Factors, vol. 60, no. 1, pp. 31–56, Feb. 2018, doi: 10.1177/0018720817733101.

R. Avram, G. Tison, K. Aschbacher, … P. K.-N. digital, and undefined 2019, “Real-world heart rate norms in the Health eHeart study,”

A. Adrienne, N. Tato, R. Nkambou, R. Ghali, F. Author, and T. Author, “Towards predicting attention and workload during math problem solving,” Springer, vol. 11528 LNCS, pp. 224–229, 2019, doi: 10.1007/978-3-030-22244-4_27.

F. Shaffer and J. P. Ginsberg, “An Overview of Heart Rate Variability Metrics and Norms,” Front. Public Heal., vol. 5, Sep. 2017, doi: 10.3389/FPUBH.2017.00258/FULL.

K. Van Stralen, K. Jager, C. Zoccali, F. D.-K. international, and undefined 2008, “Agreement between methods,” Elsevier.

E. Vlemincx, J. Taelman, S. De Peuter, I. Van Diest, and O. Van Den Bergh, “Sigh rate and respiratory variability during mental load and sustained attention,” Wiley Online Libr., vol. 48, no. 1, pp. 117–120, Jan. 2010, doi: 10.1111/j.1469-8986.2010.01043.x.


eISSN: 2231-038X