Open Access Open Access  Restricted Access Subscription or Fee Access

Reverse Breeding: A New Method for Crop Improvement

Puthem Victoria Devi


Reverse breeding makes use of genetic modification to facilitate breeding of F1 hybrids by suppression of meiotic recombination which starts with an elite heterozygous line and aims at the generation of homozygous parental lines and later original heterozygous line isconstituted. The technique allows breeders to produce a hybrid in much shorter time than the conventional methods. The objectives of reverse breeding are to provide alternative method for providing homozygous parental lines, more flexible in combining desirable parental lines for production of hybrids and allows generation of chromosome substitution line that will facilitate breeding to study on an individual chromosome level.


Chromosome substitution, Heterosis, heterozygous line, Homozygous parent, Hybrid, Meiotic division, Reverse breeding

Full Text:



Perotti, E., Grimanelli, D., John, P., Hoisington, D. and Leblanc, O., 2004. Why is transferring apomixis to crops still a dream. In New Directions for a Diverse Planet: Proceedings for the 4th International Crop Science Congress (Fischer, T., Turner, N., Angus, J., McIntyre, L., Robertson, M., Borrell, A. and Lloyd, D., eds), Brisbane, Australia: URL: http://www. cropscience. org. au/icsc2004/poster/3/2/1/1367_perottie. htm.

Dirks, R., Van Dun, K., De Snoo, C.B., Van Den Berg, M., Lelivelt, C.L., Voermans, W., Woudenberg, L., De Wit, J.P., Reinink, K., Schut, J.W. and Van Der Zeeuw, E., 2009. Reverse breeding: a novel breeding approach based on engineered meiosis. Plant biotechnology journal, 7 (9), pp. 837–845.

Erikkson, D. and Schienmann, J., 2016. Reverse breeding ‘Meet the parents. Crop genetic improvement techniques. Proceedings of the European Science Organization, 3.

Wijnker, E. and de Jong, H., 2008. Managing meiotic recombination in plant breeding. Trends in plant science, 13 (12), pp. 640–646.

Wei, G., Tao, Y., Liu, G., Chen, C., Luo, R., Xia, H., Gan, Q., Zeng, H., Lu, Z., Han, Y. and Li, X., 2009. A transcriptomic analysis of superhybrid rice LYP9 and its parents. Proceedings of the National Academy of Sciences, 106 (19), pp.7695–7701.

Dupré, A., Boyer-Chatenet, L., Sattler, R.M., Modi, A.P., Lee, J.H., Nicolette, M.L., Kopelovich, L., Jasin, M., Baer, R., Paull, T.T. and Gautier, J., 2008. A forward chemical genetic screen reveals an inhibitor of the Mre11–Rad50–Nbs1 complex. Nature chemical biology, 4 (2), pp.119–125.

Moses, M.J., 1956. Chromosomal structures in crayfish spermatocytes. The Journal of biophysical and biochemical cytology, 2 (2), p.215.

Hartung, F., Wurz-Wildersinn, R., Fuchs, J., Schubert, I., Suer, S. and Puchta, H., 2007. The catalytically active tyrosine residues of both SPO11-1 and SPO11-2 are required for meiotic double-strand break induction in Arabidopsis. The Plant Cell, 19 (10), pp. 3090 3099.

Kapoor, S., Kobayashi, A. and Takatsuji, H., 2002. Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in petunia. The Plant Cell, 14 (10), pp. 2353–2367.

Shaharuddin, N.A., Han, Y., Li, H. and Grierson, D., 2006. The mechanism of graft transmission of sense and antisense gene silencing in tomato plants. FEBS letters, 580 (28–29), pp. 6579–6586.

Ruiz, M.T., Voinnet, O. and Baulcombe, D.C., 1998. Initiation and maintenance of virus-induced gene silencing. The Plant Cell, 10 (6), pp. 937–946.


  • There are currently no refbacks.

Copyright (c) 2022 Research & Reviews: A Journal of Biotechnology