Open Access Open Access  Restricted Access Subscription or Fee Access

Single-Cell Proteomics approach for the development of Climate-resilient crops

Jyotsna Dayma


Over a last few years Single cell RNA sequencing technique has been growing at a faster pace but still the technique is unable to reveal the complexity and diversity of a cell. This void in the knowledge has led scientists to go for Single cell Proteomics. As proteins are the major work-horses of a cell they could better explain the unsolved cellular mysteries. Further the advancement in the mass spectrometry eliminated the need for antibodies based Single-cell Proteome analysis, providing a way for a minimally biased investigation of single-cell expression at the protein level. The Single Cell Proteomics could play an important role in the development of climate-resilient crops.


Single Cell Proteomics, Mass spectrometry, Climate change, Abiotic stress, Climate resilient crops, Agricultural biotechnology.

Full Text:



Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants (Basel, Switzerland), 8(2), 34.

Acevedo, M., Pixley, K., Zinyengere, N. et al. A scoping review of adoption of climate-resilient crops by small-scale producers in low- and middle-income countries. Nat.Plants 6, 1231–1241 (2020)

Vistain LF, Tay S. Single-Cell Proteomics. 2021.Trends Biochem Sci. 46(8):661-672.doi: 10.1016/j.tibs.2021.01.013.

Prasad Minakshi, Rajesh Kumar, Mayukh Ghosh, Hari Mohan Saini, KoushleshRanjan,BasantiBrar, Gaya Prasad. 2019. Chapter 14 - Single-Cell Proteomics: Technology and Applications, Editor(s): DebmalyaBarh, Vasco Azevedo, Single-Cell Omics, Academic Press. Pages: 283-318,ISBN 9780128149195,

Su, Y., Shi, Q.,Wei, W., 2017. Single cell proteomics in biomedicine: high-dimensional data acquisition, visualization, and analysis. Proteomics 17, 3–4.

Genshaft, A.S., Li, S., Gallant, C.J., Darmanis, S., Prakadan, S.M., Ziegler, C.G.K.,Lundberg, M., Fredriksson, S., Hong, J., Regev, A., Livak, K.J., Landegren, U., Shalek,A.K., 2016. Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction. Genome Biol. 17, 188.

Mannello, F., Ligi, D., Magnani, M., 2012. Deciphering the single-cell omic: innovative application for translational medicine. Expert Rev. Proteomics 9, 635–648.

Templer, R.H., Ces, O., 2008. New frontiers in single-cell analysis. J. R. Soc. Interface 5,S111–S112.

Choudhury, A.R., 2017. Cell isolation and separation techniques. Labome 7, 2260.

Perez, O.D., Nolan, G.P., 2002. Simultaneous measurement of multiple active kinase states using polychromatic flow cytometry. Nat. Biotechnol. 20, 155–162. De Rosa, S.C., Herzenberg, L.A., Roederer, M.,2001. 11-color, 13-parameter flow cytometry: identification of human naive T cells by

phenotype, function, and T-cell receptor diversity. Nat. Med.7 (2), 245–248.

Altelaar, A.F.M., Munoz, J., Heck, A.J.R., 2013. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat. Rev. Genet. 14, 35–48.

Barkla BJ, Vera-Estrella R, Pantoja O. 2013. Progress and challenges for abiotic stress proteomics of crop plants. Proteomics. 13:1801-15. doi: 10.1002/pmic.201200401.PMID: 23512887.

Efroni, I., Birnbaum, K.D. 2016. The potential of single-cell profiling in plants. Genome Biol 17, 65.

Bokhari, S. A., Wan, X. Y., Yang, Y. W., Zhou, L., Tang, W. L., & Liu, J. Y. (2007).Proteomic response of rice seedling leaves to elevated CO2 levels. Journal of Proteome Research, 6, 4624–4633.

Qiu, Q. S., Huber, J. L., Booker, F. L., Jain, V., Leakey, A. D., Fiscus, E. L., et al. (2008).Increased protein carbonylation in leaves of Arabidopsis and soybean in response to elevated [CO2]. Photosynthesis Research, 97, 155–166.

Majeran, W., Zybailov, B., Ytterberg, A. J., Dunsmore, J., Sun, Q., & van Wijk, K. J.(2008). Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Molecular & Cellular Proteomics, 7,1609–1638.

Cho, K., Shibato, J., Agrawal, G. K., Jung, Y. H., Kubo, A., Jwa, N. S., et al. (2008). Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. Journal of Proteome Research, 7, 2471–2489.

Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., et al. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America,101, 9971–9975.

Wheeler, T. R., Craufurd, P. Q., Ellis, R. H., Porter, J. R., & Vara Prasad, P. V. (2000). Temperature variability and the yield of annual crops. Agriculture Ecosystems &Environment, 82, 159 167.

Süle, A., Vanrobaeys, F., Hajós, G., Van Beeumen, J., & Devreese, B. (2004). Proteomic analysis of small heat shock protein isoforms in barley shoots. Phytochemistry, 65,1853–1863

Zhao, Z., Zhang, W., Stanley, B. A., & Assmann, S. M. (2008). Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell,20, 3210–3226.

Dooki, A. D., Mayer-Posner, F. J., Askari, H., Zaiee, A. A., & Salekdeh, G. H. (2006).Proteomic responses of rice young panicles to salinity. Proteomics, 6, 6498–6507.

Kim, M., Lim, J. H., Ahn, C. S., Park, K., Kim, G. T., Kim, W. T., et al. (2006).Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell, 18, 2341–2355.

Ahsan, N., Lee, D. G., Lee, S. H., Kang, K. Y., Bahk, J. D., Choi, M. S., et al. (2007). A comparative proteomic analysis of tomato leaves in response to water logging stress. Physiologia Plantarum, 131, 555–570.

Hashiguchi, A., Sakata, K., & Komatsu, S. (2009). Proteome analysis of early-stage soybean seedlings under flooding stress. Journal of Proteome Research, 8, 2058–2069.


  • There are currently no refbacks.

Copyright (c) 2022 Research & Reviews: A Journal of Biotechnology