Open Access Open Access  Restricted Access Subscription or Fee Access

Protein Metabolism in Plants during Abiotic Stress (Drought, Flood, Heat and Cold): An Overview

Abhisek Shrestha, B. Thapa


Plants are frequently subjected to several abiotic environmental stresses under natural conditions causing profound impacts on agricultural yield and quality. Tolerance and acclimation of plants are always related with significant changes in protein, cellular localization, post transcription and post-translational modifications. Protein response pathways as well as pathways unique to a given stress condition shared by plants under different stressed environment are discussed. In a nutshell, this paper provide an overview of several modification, synthesis, degradation and metabolism of protein in plants to cope up and revive again to normal growing conditions against abiotic stress, emphasizing drought, submerged, extreme cold and heat temperatures.



Protein, abiotic stress, tolerance, acclimation, yield

Full Text:



Achard, P., Gong, F., Cheminant, S., Alioua, M., Hedden, P., & Genschik, P. (2008). The cold-inducible CBF1 factor–dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. The Plant Cell, 20(8), 2117-2129.

Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G., & Sharma, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical reviews in biotechnology, 30(3), 161-175.

Akimoto‐Tomiyama, C., Tanabe, S., Kajiwara, H., Minami, E., & Ochiai, H. (2018). Loss of chloroplast‐localized protein phosphatase 2Cs in Arabidopsis thaliana leads to enhancement of plant immunity and resistance to Xanthomonas campestris pv. campestris infection. Molecular plant pathology, 19(5),


Alcázar, R., Marco, F., Cuevas, J. C., Patron, M., Ferrando, A., Carrasco, P., ... & Altabella, T. (2006). Involvement of polyamines in plant response to abiotic stress. Biotechnology letters, 28(23), 1867-1876.

Aleksza, D., Horváth, G. V., Sándor, G., & Szabados, L. (2017). Proline accumulation is regulated by transcription factors associated with phosphate starvation. Plant Physiology, 175(1),


Amir, R. (2010). Current understanding of the factors regulating methionine content in vegetative tissues of higher plants. Amino acids, 39(4), 917-931.

Amor, Y., Haigler, C. H., Johnson, S., Wainscott, M., & Delmer, D. P. (1995). A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proceedings of the National Academy of Sciences, 92(20), 9353-9357.

Aranjuelo, I., Molero, G., Erice, G., Avice, J. C., & Nogués, S. (2011). Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). Journal of experimental botany, 62(1), 111-123.

Araújo, W. L., Tohge, T., Ishizaki, K., Leaver, C. J., & Fernie, A. R. (2011). Protein degradation–an alternative respiratory substrate for stressed plants. Trends in plant science, 16(9), 489-498.

Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of experimental botany, 63(10),


Baena-González, E. (2010). Energy signaling in the regulation of gene expression during stress. Molecular plant, 3(2), 300-313.

Baena-González, E., & Sheen, J. (2008). Convergent energy and stress signaling. Trends in plant science, 13(9), 474-482.

Bailey-Serres, J., & Voesenek, L. A. C. J. (2008). Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol., 59, 313-339.

Barros, J. A., Cavalcanti, J. H. F., Medeiros, D. B., Nunes-Nesi, A., Avin-Wittenberg, T., Fernie, A. R., & Araújo, W. L. (2017). Autophagy deficiency compromises alternative pathways of respiration following energy deprivation in Arabidopsis thaliana. Plant Physiology, 175(1), 62-76.

Batista-Silva, W., Heinemann, B., Rugen, N., Nunes-Nesi, A., Araújo, W. L., Braun, H. P., & Hildebrandt, T. M. (2019). The role of amino acid metabolism during abiotic stress release. Plant Cell and Environment, 42(5), 1630–1644.

Benešová, M., Holá, D., Fischer, L., Jedelský, P. L., & Hnilicka, F. (2012). The Physiology and Proteomics of Drought Tolerance in Maize: Early Stomatal Closure.

Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress- tolerant crops. Frontiers in Plant Science 4, 273. doi:10.3389/fpls. 2013.00273

Bleeker, P. M., Diergaarde, P. J., Ament, K., Schütz, S., Johne, B., Dijkink, J., ... & Haring, M. A. (2011). Tomato-produced 7-epizingiberene and R-curcumene act as repellents to whiteflies. Phytochemistry, 72(1), 68-73.

Bogeat-Triboulot, M. B., Brosché, M., Renaut, J., Jouve, L., Le Thiec, D., Fayyaz, P., ... & Altman, A. (2007). Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant physiology, 143(2), 876-892.

Bohler, S., Sergeant, K., Jolivet, Y., Hoffmann, L., Hausman, J. F., Dizengremel, P., & Renaut, J. (2013). A physiological and proteomic study of poplar leaves during ozone exposure combined with mild drought. Proteomics, 13(10-11), 1737-1754.

Bösl, B., Grimminger, V., & Walter, S. (2006). The molecular chaperone Hsp104—a molecular machine for protein disaggregation. Journal of structural biology, 156(1), 139-148.

Briggs, D. R., & Siminovitch, D. (1949). The chemistry of the living bark of the black locust tree relation to frost hardiness; seasonal variations in the electrophoresis patterns of the water-soluble proteins of the bark. Archives of biochemistry, 23(1), 18.

Burke, T. J., Callis, J., & Vierstra, R. D. (1988). Characterization of a polyubiquitin gene from Arabidopsis thaliana. Molecular and General Genetics MGG, 213(2-3), 435-443.

Cattivelli, L., & Bartels, D. (1989). Cold-induced mRNAs accumulate with different kinetics in barley coleoptiles. Planta, 178(2), 184-188.

Chen Y, Chen X, Wang H, Bao Y, Zhang W (2014) Examination of the leaf proteome during flooding stress and the induction of programmed cell death in maize. Proteome Sci 12:1.

Chen, T. H., & Gusta, L. V. (1983). Abscisic acid-induced freezing resistance in cultured plant cells. Plant physiology, 73(1), 71-75.

Chen, Y. C., Holmes, E. C., Rajniak, J., Kim, J. G., Tang, S., Fischer, C. R., ... & Sattely, E. S. (2018). N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis. Proceedings of the National Academy of Sciences, 115(21), E4920-E4929.

Chinnusamy, V., Zhu, J., & Zhu, J. K. (2007). Cold stress regulation of gene expression in plants. Trends in plant science, 12(10), 444-451.

Cho, Y. H., Hong, J. W., Kim, E. C., & Yoo, S. D. (2012). Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development. Plant Physiology, 158(4), 1955-1964.

Choudhary, M., & Padaria, J. C. (2015). Transcriptional profiling in pearl millet (Pennisetum glaucum LR Br.) for identification of differentially expressed drought responsive genes. Physiology and Molecular Biology of Plants, 21(2),


Choudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90(5), 856-867.

Christensen, A. H., Sharrock, R. A., & Quail, P. H. (1992). Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant molecular biology, 18(4), 675-689.

Cook, D., Fowler, S., Fiehn, O., & Thomashow, M. F. (2004). A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proceedings of the National Academy of Sciences, 101(42), 15243-15248.

Deeba, F., Pandey, A. K., Ranjan, S., Mishra, A., Singh, R., Sharma, Y. K., ... & Pandey, V. (2012). Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiology and Biochemistry, 53, 6-18.

Délano-Frier, J. P., Avilés-Arnaut, H., Casarrubias-Castillo, K., Casique-Arroyo, G., Castrillón-Arbeláez, P. A., Herrera-Estrella, L., ... & Estrada-Hernández, M. G. (2011). Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress. BMC genomics, 12(1), 363.

Dhaubhadel, S., Browning, K. S., Gallie, D. R., & Krishna, P. (2002). Brassinosteroid functions to protect the translational machinery and heat‐shock protein synthesis following thermal stress. The Plant Journal, 29(6), 681-691.

Dickens, B. F., & Thompson Jr, G. A. (1981). Rapid membrane response during low-temperature acclimation Correlation of early changes in the physical properties and lipid composition of Tetrahymena microsomal membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 644(2), 211-218.

Dobson, C. M., Šali, A., & Karplus, M. (1998). Protein folding: a perspective from theory and experiment. Angewandte Chemie International Edition, 37(7), 868-893.

FAO. Adaptation to climate change in agriculture, forestry and fisheries: Perspective, framework and priorities. . Rome: FAO; 2007; IDWG on Climate Change

Farooq, M., & Barsa, S. M. A. (2006). Wahid. A., Lee, DJ, Cheema, SA and Aziz, 336-345.

Feder, M. E. (2006, October). Integrative biology of stress: molecular actors, the ecological theater, and the evolutionary play. In International symposium on environmental factors, cellular stress and evolution, Varanasi, India (Vol. 2006).

Ferguson, D. L., Guikema, J. A., & Paulsen, G. M. (1990). Ubiquitin pool modulation and protein degradation in wheat roots during high temperature stress. Plant Physiology, 92(3), 740-746.

Ford, K. L., Cassin, A., & Bacic, A. F. (2011). Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Frontiers in plant science, 2, 44.

Foyer, C. H., & Noctor, G. (2005). Oxidant and antioxidant signalling in plants: a re‐evaluation of the concept of oxidative stress in a physiological context. Plant, Cell & Environment, 28(8), 1056-1071.

Fraire-Velazquez, S., & Emmanuel, V. (2013). Abiotic Stress in Plants and Metabolic Responses. Abiotic Stress - Plant Responses and Applications in Agriculture.

Fukao, T., & Xiong, L. (2013). Genetic mechanisms conferring adaptation to submergence and drought in rice: Simple or complex? Current Opinion in Plant Biology, 16(2), 196–204.

Garbarino, J. E., Rockhold, D. R., & Belknap, W. R. (1992). Expression of stress-responsive ubiquitin genes in potato tubers. Plant molecular biology, 20(2), 235-244.

Gazanchian, A., Hajheidari, M., Sima, N. K., & Salekdeh, G. H. (2007). Proteome response of Elymus elongatum to severe water stress and recovery. Journal of Experimental Botany, 58(2), 291-300.

Ghabooli, M., Khatabi, B., Ahmadi, F. S., Sepehri, M., Mirzaei, M., Amirkhani, A., ... & Salekdeh, G. H. (2013). Proteomics study reveals the molecular mechanisms underlying water stress tolerance.

Ghillebert, R., Swinnen, E., Wen, J., Vandesteene, L., Ramon, M., Norga, K., ... & Winderickx, J. (2011). The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. The FEBS journal, 278(21), 3978-3990.

Gilmour, S. J., Fowler, S. G., & Thomashow, M. F. (2004). Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant molecular biology, 54(5), 767-781.

Gilmour, S. J., Sebolt, A. M., Salazar, M. P., Everard, J. D., & Thomashow, M. F. (2000). Overexpression of the Arabidopsis CBF3transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant physiology, 124(4), 1854-1865.

Gilroy, S., Białasek, M., Suzuki, N., Górecka, M., Devireddy, A. R., Karpiński, S., & Mittler, R. (2016). ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant physiology, 171(3), 1606-1615.

Good, A. G., & Zaplachinski, S. T. (1994). The effects of drought stress on free amino acid accumulation and protein synthesis in Brassica napus. Physiologia plantarum, 90(1), 9-14.

Grativol, C., Hemerly, A. S., & Ferreira, P. C. G. (2012). Genetic and epigenetic regulation of stress responses in natural plant populations. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(2), 176-185.

Guimaraes, E., & Jueneman, E. (2008). The Global Partnership Initiative for Plant Breeding Capacity Building (GIPB) (No. IAEA-CN--167).

Gupta, S. C., Sharma, A., Mishra, M., Mishra, R. K., & Chowdhuri, D. K. (2010). Heat shock proteins in toxicology: how close and how far?. Life sciences, 86(11-12), 377-384.

Gurley, W. B., & Key, J. L. (1991). Transcriptional regulation of the heat-shock response: a plant perspective. Biochemistry, 30(1), 1-12.

Guy, C. L. (1990). Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annual Review of Plant Physiology and Plant Molecular Biology, 41(1), 187–223.


Guy, C. L., & Carter, J. V. (1984). Characterization of partially purified glutathione reductase from cold-hardened and nonhardened spinach leaf tissue. Cryobiology, 21(4), 454-464.

Gygi, S. P., Rochon, Y., Franza, B. R., & Aebersold, R. (1999). Correlation between protein and mRNA abundance in yeast. Molecular and cellular biology, 19(3), 1720-1730.

Hall, T. C., McLeester, R. C., McCown, B. H., & Beck, G. E. (1970). Enzyme changes during deacclimation of willow stem. Cryobiology, 7(2-3), 130-135.

Haque, E., Kawaguchi, K., & Komatsu, S. (2011). Analysis of proteins in aerenchymatous seminal roots of wheat grown in hypoxic soils under waterlogged conditions (supplementary material). Protein and peptide letters, 18(9),


Hartmann, M., Zeier, T., Bernsdorff, F., Reichel-Deland, V., Kim, D., Hohmann, M., ... & Ganter, C. (2018). Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity. Cell, 173(2), 456-469.

Hashiguchi, A., Sakata, K., & Komatsu, S. (2009). Proteome analysis of early-stage soybean seedlings under flooding stress. Journal of proteome research, 8(4),


Hey, S., Mayerhofer, H., Halford, N. G., & Dickinson, J. R. (2007). DNA sequences from Arabidopsis, which encode protein kinases and function as upstream regulators of Snf1 in yeast. Journal of Biological Chemistry, 282(14), 10472-10479.

Hildebrandt, T. M. (2018). Synthesis versus degradation: directions of amino acid metabolism during Arabidopsis abiotic stress response. Plant molecular biology, 98(1-2), 121-135.

Hirota, T., Izumi, M., Wada, S., Makino, A., & Ishida, H. (2018). Vacuolar protein degradation via autophagy provides substrates to amino acid catabolic pathways as an adaptive response to sugar starvation in Arabidopsis thaliana. Plant and Cell Physiology, 59(7), 1363-1376.

Holcik, M., & Sonenberg, N. (2005). Translational control in stress and apoptosis. Nature reviews Molecular cell biology, 6(4), 318-327.

Hossain Z, López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2009) Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage. J Plant Physiol 166:1391–1404

Hu, W., Hu, G., & Han, B. (2009). Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Science, 176(4), 583-590.

Huang, T., & Jander, G. (2017). Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana. Planta, 246(4),


Zadražnik, T., Hollung, K., Egge-Jacobsen, W., Meglič, V., & Šuštar-Vozlič, J. (2013). Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). Journal of proteomics, 78, 254-272.

Huner, N. P. A., & Macdowall, F. D. H. (1976). Effect of cold adaptation of Puma rye on properties of RUDP carboxylase. Biochemical and biophysical research communications, 73(2), 411-420.

Huner, N. P. A., & Macdowall, F. D. H. (1978). Evidence for an in vivo conformational change in ribulose bisphosphate carboxylase–oxygenase from Puma rye during cold adaptation. Canadian journal of biochemistry, 56(12), 1154-1161.

Huner, N. P., & Carter, J. V. (1982). Differential subunit aggregation of a purified protein from cold-hardened and unhardened Puma rye. Zeitschrift für Pflanzenphysiologie, 106(2), 179-184.

Imamura, H., Matsuyama, Y., Miyagawa, Y., Ishida, K., Shimada, R., Miyagawa, S., ... & Kawasaki, S. (1999). Prognostic significance of anatomical resection and des‐γ‐carboxy prothrombin in patients with hepatocellular carcinoma. British journal of surgery, 86(8), 1032-1038.

Islam, M., Begum, M. C., Kabir, A. H., & Alam, M. F. (2015). Molecular and biochemical mechanisms associated with differential responses to drought tolerance in wheat (Triticum aestivum L.). Journal of plant interactions, 10(1), 195-201.

Jha UC, Bohra A, Singh NP (2014) Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breeding 133, 679–701. doi:10.1111/pbr.12217

Jiang, G., Wang, Z., Shang, H., Yang, W., Hu, Z., Phillips, J., & Deng, X. (2007). Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration. Planta, 225(6), 1405.

Jin, L. G., & Liu, J. Y. (2008). Molecular cloning, expression profile and promoter analysis of a novel ethylene responsive transcription factor gene GhERF4 from cotton (Gossypium hirstum). Plant Physiology and Biochemistry, 46(1),


Jin, L., Huang, B., Li, H., & Liu, J. (2009). Expression profiles and transactivation analysis of a novel ethylene-responsive transcription factor gene GhERF5 from cotton. Progress in Natural Science, 19(5), 563-572.

Júnior, D. F., Gaion, L. A., Júnior, G. S., Santos, D. M. M., & Carvalho, R. F. (2018). Drought-induced proline synthesis depends on root-to-shoot communication mediated by light perception. Acta physiologiae plantarum, 40(1), 15.

Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature biotechnology, 17(3),


Key, J. L., Lin, C. Y., & Chen, Y. M. (1981). Heat shock proteins of higher plants. Proceedings of the National Academy of Sciences, 78(6), 3526-3530.

Khan MN, Sakata K, Hiraga S, Komatsu S (2014) Quantitative proteomics reveals that peroxidases play key roles in post-flooding recovery in soybean roots. J Proteome Res 13:5812–5828.

Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., ... & Harter, K. (2007). The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV‐B light, drought and cold stress responses. The Plant Journal, 50(2), 347-363.

Kim, H. J., Hwang, N. R., & Lee, K. J. (2007). Heat shock responses for understanding diseases of protein denaturation. Molecules & Cells (Springer Science & Business Media BV), 23(2).

Koh, J., Chen, G., Yoo, M. J., Zhu, N., Dufresne, D., Erickson, J. E., ... & Chen, S. (2015). Comparative proteomic analysis of Brassica napus in response to drought stress. Journal of proteome research, 14(8), 3068-3081.

Komatsu S, Kamal AHM, Makino T, Hossain Z (2014) Ultraweak photon emission and proteomics analyses in soybean under abiotic stress. Biochim Biophys Acta 1844:1208–1218.

Komatsu S, Kuji R, Nanjo Y, Hiraga S, Furukawa K (2012) Comprehensive analysis of endoplasmic reticulum-enriched fraction in root tips of soybean under flooding stress using proteomics techniques. J Proteomics 77:531–560.

Komatsu S, Yamamoto A, Nakamura T, Nouri M-Z, Nanjo Y, Nishizawa K et al (2011) Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques. J Proteome Res 10:3993–4004.

Komatsu, S., Kobayashi, Y., Nishizawa, K., Nanjo, Y., & Furukawa, K. (2010). Comparative proteomics analysis of differentially expressed proteins in soybean cell wall during flooding stress. Amino acids, 39(5), 1435-1449.

Komatsu, S., Sugimoto, T., Hoshino, T., Nanjo, Y., & Furukawa, K. (2010). Identification of flooding stress responsible cascades in root and hypocotyl of soybean using proteome analysis. Amino Acids, 38(3), 729-738.

Kosová, K., Vítámvás, P., Prášil, I. T., & Renaut, J. (2011). Plant proteome changes under abiotic stress - Contribution of proteomics studies to understanding plant stress response. Journal of Proteomics, 74(8), 1301–1322.

Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of experimental botany, 63(4), 1593-1608.

Zhang, J. H., Wang, L. J., Pan, Q. H., Wang, Y. Z., Zhan, J. C., & Huang, W. D. (2008). Accumulation and subcellular localization of heat shock proteins in young grape leaves during cross-adaptation to temperature stresses. Scientia Horticulturae, 117(3), 231-240.

Krasnuk, M., Jung, G. A., & Witham, F. H. (1975). Electrophoretic studies of the relationship of peroxidases, polyphenol oxidase, and indoleacetic acid oxidase to cold tolerance of alfalfa. Cryobiology, 12(1), 62-80.

Krasnuk, M., Jung, G. A., & Witham, F. H. (1976). Electrophoretic studies of several dehydrogenases in relation to the cold tolerance of alfalfa. Cryobiology, 13(3), 375-393.

Labarrere, C. A., Woods, J. R., Hardin, J. W., Campana, G. L., Ortiz, M. A., Jaeger, B. R., ... & Pitts, D. E. (2011). Early prediction of cardiac allograft vasculopathy and heart transplant failure. American Journal of Transplantation, 11(3), 528-535.

Lee, U., Rioflorido, I., Hong, S. W., Larkindale, J., Waters, E. R., & Vierling, E. (2007). The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. The Plant Journal, 49(1), 115-127.

Lefebvre, B., Timmers, T., Mbengue, M., Moreau, S., Hervé, C., Tóth, K., ... & Murray, J. D. (2010). A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proceedings of the National Academy of Sciences, 107(5), 2343-2348.

Levitt, J. (1962). Responses of plants to environmental stresses (No. 581.24/L666). Academic Press, New York. Maguire, JD.

Levitt, M., Gerstein, M., Huang, E., Subbiah, S., & Tsai, J. (1997). Protein folding: the endgame. Annual review of biochemistry, 66(1), 549-579.

Li, F. H., Fu, F. L., Sha, L. N., He, L., & Li, W. C. (2009). Differential expression of serine/threonine protein phosphatase type-2C under drought stress in maize. Plant molecular biology reporter, 27(1), 29.

Li, R., Jiang, X., Jin, D., Dhaubhadel, S., Bian, S., & Li, X. (2015). Identification of 14-3-3 family in common bean and their response to abiotic stress. PLoS one, 10(11).

Liu J, Feng L, Li J, He Z (2015) Genetic and epigenetic control of plant heat responses. Frontiers in Plant Science 6, 267.

Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell, 10(8), 1391-1406.

Loiacono, F. V., & De Tullio, M. C. (2012). Why we should stop inferring simple correlations between antioxidants and plant stress resistance: towards the antioxidomic era. Omics: a journal of integrative biology, 16(4), 160-167.

Lubben, T. H., Donaldson, G. K., Viitanen, P. V., & Gatenby, A. A. (1989). Several proteins imported into chloroplasts form stable complexes with the GroEL-related chloroplast molecular chaperone. The plant cell, 1(12), 1223-1230.

Lynch, D. V., & Thompson, G. A. (1984). Microsomal phospholipid molecular species alterations during low temperature acclimation in Dunaliella. Plant physiology, 74(2), 193-197.

Ma, Q. H. (2007). Small GTP-binding proteins and their functions in plants. Journal of Plant Growth Regulation, 26(4), 369-388.

Marmiroli, N., Terzi, V., Stanca, M. O., Lorenzoni, C., & Stanca, A. M. (1986). Protein synthesis during cold shock in barley tissues. Theoretical and applied genetics, 73(2), 190-196.

Martinelli, T., Whittaker, A., Bochicchio, A., Vazzana, C., Suzuki, A., & Masclaux-Daubresse, C. (2007). Amino acid pattern and glutamate metabolism during dehydration stress in the ‘resurrection’plant Sporobolus stapfianus: a comparison between desiccation-sensitive and desiccation-tolerant leaves. Journal of Experimental Botany, 58(11), 3037-3046.

Maruyama, K., Takeda, M., Kidokoro, S., Yamada, K., Sakuma, Y., Urano, K., ... & Sasaki, R. (2009). Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant physiology, 150(4), 1972-1980.

McCown, B. H., McLeester, R. C., Beck, G. E., & Hall, T. C. (1969). Environment-induced changes in peroxidase zymograms in the stems of deciduous and evergreen plants. Cryobiology, 5(6), 410-412.

Meehl GA, Washington WM, Collins WD, Arblaster JM, Hu A, Buja LE, Strand WG, Teng H (2005) How much more global warming and sea level rise? Science 307, 1769–1772. doi:10.1126/science.1106663

Miernyk, J. A. (1999). Protein folding in the plant cell. Plant Physiology, 121(3), 695-703.

Miller, G. A. D., Suzuki, N., Ciftci‐Yilmaz, S. U. L. T. A. N., & Mittler, R. O. N. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, cell & environment, 33(4), 453-467.

Mohammadi, P. P., Moieni, A., Hiraga, S., & Komatsu, S. (2012). Organ-specific proteomic analysis of drought-stressed soybean seedlings. Journal of proteomics, 75(6), 1906-1923.

Morimoto, R. I. (1993). Cells in stress: transcriptional activation of heat shock genes. SCIENCE-NEW YORK THEN WASHINGTON-, 259, 1409-1409.

Morimoto, R. I., & Santoro, M. G. (1998). Stress–inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nature biotechnology, 16(9), 833-838.

Morimoto, R. I., Tissieres, A., & Georgopoulos, C. (1994). Heat shock proteins: Structure, function and regulation. In Cold Spring Harbor Lab. Press, Cold Spring Harbor, NY.

Nakamoto, H., & Vigh, L. (2007). The small heat shock proteins and their clients. Cellular and Molecular Life Sciences, 64(3), 294-306.

Nakashima, K., Takasaki, H., Mizoi, J., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2012). NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(2), 97-103.

Nanjo, Y., Skultety, L., Ashraf, Y., & Komatsu, S. (2010). Comparative proteomic analysis of early-stage soybean seedlings responses to flooding by using gel and gel-free techniques. Journal of Proteome Research, 9(8), 3989-4002.

Nanjo, Y., Skultety, L., Uváčková, L. U., Klubicová, K., Hajduch, M., & Komatsu, S. (2012). Mass spectrometry-based analysis of proteomic changes in the root tips of flooded soybean seedlings. Journal of proteome research, 11(1), 372-385.

Nsimba-Lubaki, M., & Peumans, W. J. (1986). Seasonal fluctuations of lectins in barks of elderberry (Sambucus nigra) and black locust (Robinia pseudoacacia). Plant Physiology, 80(3), 747-751.

Oh M, Komatsu S (2015) Characterization of proteins in soybean roots under flooding and drought stresses. J Proteomics 114:161–181.

Pan, Z., Zhao, Y., Zheng, Y., Liu, J., Jiang, X., & Guo, Y. (2012). A high-throughput method for screening Arabidopsis mutants with disordered abiotic stress-induced calcium signal. Journal of Genetics and Genomics, 39(5), 225-235.

Panaretou, B., & Zhai, C. (2008). The heat shock proteins: their roles as multi-component machines for protein folding. Fungal Biology Reviews, 22(3-4), 110-119.

Pandey, A., Rajamani, U., Verma, J., Subba, P., Chakraborty, N., Datta, A., ... & Chakraborty, N. (2010). Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. Journal of Proteome Research, 9(7), 3443-3464.

Parsell, D. A., & Lindquist, S. (1993). The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annual review of genetics, 27(1), 437-496.

Yang, D. H., Kwak, K. J., Kim, M. K., Park, S. J., Yang, K. Y., & Kang, H. (2014). Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions. Plant Science, 214, 106-112.

Pires, M. V., Pereira Júnior, A. A., Medeiros, D. B., Daloso, D. M., Pham, P. A., Barros, K. A., ... & Araújo, W. L. (2016). The influence of alternative pathways of respiration that utilize branched‐chain amino acids following water shortage in Arabidopsis. Plant, cell & environment, 39(6), 1304-1319.

Pomeroy, M. K., Siminovitch, D., & Wightman, F. (1970). Seasonal biochemical changes in the living bark and needles of red pine (Pinus resinosa) in relation to adaptation to freezing. Canadian journal of botany, 48(5), 953-967.

Pratt, W. B., & Toft, D. O. (2003). Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Experimental biology and medicine, 228(2), 111-133.

Pratt, W. B., Galigniana, M. D., Harrell, J. M., & DeFranco, D. B. (2004). Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cellular signalling, 16(8), 857-872.

Qu, C., Liu, C., Ze, Y., Gong, X., Hong, M., Wang, L., & Hong, F. (2011). Inhibition of nitrogen and photosynthetic carbon assimilation of maize seedlings by exposure to a combination of salt stress and potassium-deficient stress. Biological trace element research, 144(1-3), 1159-1174.

Ranieri, A., Bernardi, R., Lanese, P., & Soldatini, G. F. (1989). Changes in free amino acid content and protein pattern of maize seedlings under water stress. Environmental and experimental botany, 29(3), 351-357.

Reddy, A. S., Ali, G. S., Celesnik, H., & Day, I. S. (2011). Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. The Plant Cell, 23(6), 2010-2032.

Riov, J., & Brown, G. N. (1976). Comparative studies of activity and properties of ferredoxin–NADP+ reductase during cold hardening of wheat. Canadian Journal of Botany, 54(16), 1896-1902.

Roberts, D. W. A. (1979). Changes in the proportions of two forms of invertase associated with the cold acclimation of wheat. Canadian Journal of Botany, 57(4), 413-419.

Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421, 57–60. doi:10.1038/nature01333

Rousch, J. M., Bingham, S. E., & Sommerfeld, M. R. (2004). Protein expression during heat stress in thermo-intolerant and thermo-tolerant diatoms. Journal of Experimental Marine Biology and Ecology, 306(2), 231-243.

Salavati A, Khatoon A, Nanjo Y, Komatsu S (2012) Analysis of proteomic changes in roots of soybean seedlings during recovery after flooding. J Proteomics 75:878–893.

Salekdeh, G. H., Siopongco, J., Wade, L. J., Ghareyazie, B., & Bennett, J. (2002). Proteomic analysis of rice leaves during drought stress and recovery. PROTEOMICS: International Edition, 2(9), 1131-1145.

Schmidhuber, J., & Tubiello, F. N. (2007). Global food security under climate change. Proceedings of the National Academy of Sciences, 104(50), 19703-19708.

Schulze-Lefert, P. (2004). Plant immunity: the origami of receptor activation. Current Biology, 14(1), R22-R24.

Seo, J. S., Park, T. J., Lee, Y. M., Park, H. G., Yoon, Y. D., & Lee, J. S. (2006). Small heat shock protein 20 gene (Hsp20) of the intertidal copepod Tigriopus japonicus as a possible biomarker for exposure to endocrine disruptors. Bulletin of Environmental Contamination & Toxicology, 76(4).

Sergeant, K., Spieß, N., Renaut, J., Wilhelm, E., & Hausman, J. F. (2011). One dry summer: a leaf proteome study on the response of oak to drought exposure. Journal of proteomics, 74(8), 1385-1395.

Sheikh, A. H., Eschen-Lippold, L., Pecher, P., Hoehenwarter, W., Sinha, A. K., Scheel, D., & Lee, J. (2016). Regulation of WRKY46 transcription factor function by mitogen-activated protein kinases in Arabidopsis thaliana. Frontiers in plant science, 7, 61.

Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of experimental botany, 58(2), 221-227.

Zhang, W., Yang, G., Mu, D., Li, H., Zang, D., Xu, H., ... & Wang, Y. (2016). An ethylene-responsive factor BpERF11 negatively modulates salt and osmotic tolerance in Betula platyphylla. Scientific reports, 6(1), 1-13.

Showler, A. T. (2002). Effects of water deficit stress, shade, weed competition, and kaolin particle film on selected foliar free amino acid accumulations in cotton, Gossypium hirsutum (L.). Journal of chemical ecology, 28(3), 631-651.

Siminovitch, D., & Cloutier, Y. (1982). Twenty-four-hour induction of freezing and drought tolerance in plumules of winter rye seedlings by desiccation stress at room temperature in the dark. Plant Physiology, 69(1), 250-255.

Solaw, F. A. O. (2011). The state of the world’s land and water resources for food and agriculture. Rome, Italy.

Song, L., Li, R., Xiang, X., Wang, J., Qiao, L., Song, X., ... & Sui, J. (2012). Overexpression of stress-inducible small GTP-binding protein AhRab7 (AhRabG3f) in peanut (Arachis hypogaea L.) enhances abiotic stress tolerance. J. Food Agric. Environ, 10, 888-894.

Spagnoletta, A., De Santis, A., Tampieri, E., Baraldi, E., Bachi, A., & Genchi, G. (2006). Identification and kinetic characterization of HtDTC, the mitochondrial dicarboxylate–tricarboxylate carrier of Jerusalem artichoke tubers. Journal of bioenergetics and biomembranes, 38(1), 57-65.

Steponkus, P. L. (1984). Role of the plasma membrane in freezing injury and cold acclimation. Annual Review of Plant Physiology, 35(1), 543-584.

Su, P. H., & Li, H. M. (2008). Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant physiology, 146(3), 1231-1241.

Sun, G., Xie, F., & Zhang, B. (2011). Transcriptome-wide identification and stress properties of the 14-3-3 gene family in cotton (Gossypium hirsutum L.). Functional & integrative genomics, 11(4), 627-636.

Sun, X., Luo, X., Sun, M., Chen, C., Ding, X., Wang, X., ... & Cai, H. (2014). A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana. Plant and cell physiology, 55(1), 99-118.

Tatjana, M. H., Nesi, A. N., Wagner, L. A., & Braun, H. P. (2015). Amino acid catabolism in plants. Mol Plant, 8(11), 1563-1579.

Thomashow, M. F. (1999). Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annual review of plant biology, 50(1), 571-599.

Thomashow, M. F. (2010). Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant physiology, 154(2), 571-577.

Timperio, A. M., Egidi, M. G., & Zolla, L. (2008). Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). Journal of proteomics, 71(4), 391-411.

Tripp, J., Mishra, S. K., & SCHARF, K. D. (2009). Functional dissection of the cytosolic chaperone network in tomato mesophyll protoplasts. Plant, Cell & Environment, 32(2), 123-133.

Tzin, V., & Galili, G. (2010). New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Molecular plant, 3(6), 956-972.

Uemura, M., & Yoshida, S. (1984). Involvement of plasma membrane alterations in cold acclimation of winter rye seedlings (Secale cereale L. cv Puma). Plant physiology, 75(3), 818-826.

Urzúa, U., Kersten, P. J., & Vicuña, R. (1998). Manganese peroxidase-dependent oxidation of glyoxylic and oxalic acids synthesized by Ceriporiopsis subvermispora produces extracellular hydrogen peroxide. Appl. Environ. Microbiol., 64(1), 68-73.

Van Vuuren DP, Meinshausen M, Plattner G-K, Joos F, Strassmann KM, Smith SJ, Wigley TML, Raper SCB, Riahi K, de la Chesnaye F, den Elzen MGJ, Fujino J, Jiang K, Nakicenovic N, Paltsev S, Reilly JM (2008) Temperature increase of 21st century mitigation scenarios. Proceedings of the National Academy of Sciences of the United States of America 105, 15258–15262. doi:10.1073/pnas.0711129105

Vickers, N. J. (2017). Animal Communication: When I’m Calling You, Will You Answer Too?. Current Biology, 27(14), R713-R715.

Vierling, E. (1991). The roles of heat shock proteins in plants. Annual review of plant biology, 42(1), 579-620.

Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in plant science, 9(5), 244-252.

Wang, X. Q., Yang, P. F., Liu, Z., Liu, W. Z., Hu, Y., Chen, H., ... & He, Y. K. (2009). Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy. Plant physiology, 149(4), 1739-1750.

Wang, X., Vignjevic, M., Jiang, D., Jacobsen, S., & Wollenweber, B. (2014). Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett. Journal of experimental botany, 65(22), 6441-6456.

Wettern, M., Parag, H. A., Pollmann, L., Ohad, I., & Kulka, R. G. (1990). Ubiquitin in Chlamydomonas reinhardii: distribution in the cell and effect of heat shock and photoinhibition on its conjugate pattern. European journal of biochemistry, 191(3), 571-576.

Yacoob, R. K., & Filion, W. G. (1986). Temperature-stress response in maize: a comparison of several cultivars. Canadian journal of genetics and cytology, 28(6), 1125-1131.


  • There are currently no refbacks.

Copyright (c) 2021 Research & Reviews: A Journal of Biotechnology