Open Access Open Access  Restricted Access Subscription or Fee Access

A Detail Opto-electronic and Photocatalytic Study of Amorphous Carbon Nanotubes—MoS2 Hybrids

Binoy Bera, Diptonil Banerjee


Amorphous carbon nanotube – MoS2 nanohybrids were synthesized by simple hydrothermal method where two different precursor, thiourea and L-cysteine were used as a source of sulfur. Amorphous carbon nanotube has been prepared separately by a low temperature chemical process. Amorphous carbon nanotube-MoS2 nanohybrids were characterized by using X-ray diffraction, energy dispersive X-ray analysis, field emission scanning and high resolution transmission electron microscope, Raman spectrometer. Dye removal (from water) performance of two different as prepared nanohybrids was also experimented. Band gap which is an important parameter for determining the optoelectronic property of any material has also been calculated using tauc plot


Amorphous carbon nanotube, dye removal performance, MoS2, nanohybrids

Full Text:



S. Iijima. Helical microtubules of graphitic carbon. Nature 354, 56 – 58p.

T. W. Ebbesen, P. M. Ajayan. Nature 1992, 358, 220p.

A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, , A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley. Science 1996, 273, 483p.

M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, H. W. Kroto. J. Phys. Chem. Solids 1993, 54, 1841p.

Liu Y, Tang J, Chen X, Chen W, Pang GKH, Xin JH. A wet-chemical route for the decoration of CNTs with silver nanoparticles. Carbon. 2006; 44 (2): 381–383p.

Zanolli Z, Leghrib R, Felten A, Pireaux J, Llobet E, Charlier J. Gas sensing with Au-decorated carbon nanotubes. Journal of American Chemical Society. 2011; 6 (5): 4592–4599p.

Zhaoet T. Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes. Sci. Rep. 2014; 4: 5619p.

Guo DJ, Li HL. Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon. 2005; 43 (6): 1259–1264p.

Bera B. Literature Review on Electrospinning Process (A Fascinating Fiber Fabrication Technique). Imperial Journal of Interdisciplinary Research. 2016; 2 (8): 972-984p.

Bera B, Sarkar MD. Piezoelectricity in PVDF and PVDF Based Piezoelectric Nanogenerator: A Concept. IOSR Journal of Applied Physics. 2017; 9 (3): 95-99p.

Bera B, Mandal D, Sarkar MD. Sensor Made of PVDF/graphene Electrospinning Fiber and Comparison between Electrospinning PVDF Fiber and PVDF/graphene Fiber. Imperial Journal of Interdisciplinary Research. 2016; 2 (5): 1411-1413p.

Bera B, Sarkar MD. Gold Nanoparticle Doped PVDF Nanofiber Preparation of Concurrently Harvesting Light and Mechanical Energy. IOSR Journal of Applied Physics (IOSR-JAP). 2017; 9 (3): 05-12p.

Bera B, Sarkar MD. PVDF based Piezoelectric Nanogenerator as a new kind of device for generating power from renewable resources. IOSR Journal of Polymer and Textile Engineering. 2017; 4 (2): 01-05p.

Bera B. Preparation of polymer nanofiber and its application. Asian journal of physical and chemical sciences. 2017; 2 (4): 1-4p.

Bera B. Literature Review on Triboelectric Nanogenerator. Imperial Journal of Interdisciplinary Research. 2016; 2 (10): 1263-1271p.

Bera B. Preparation of MoS2 nanosheets and PVDF nanofiber. Asian journal of physical and chemical sciences. 2017; 2 (4): 1-9p.

Bera B. Nanoporous Silicon Prepared by Vapour Phase Strain Etch and Sacrificial Technique. IJCA Proceedings on International Conference on Microelectronic Circuit and System MICRO. 2015; 1: 42-45p.

Bera B, Mandal D, Sarkar MD. Porous Silicon and its Nanoparticle as Biomaterial: A Review. Imperial Journal of Interdisciplinary Research. 2016; 2 (11): 1414-1419p.

Bera B. A Review on Polymer, Graphene and Carbon Nanotube: Properties, Synthesis and Applications. Imperial Journal of Interdisciplinary Research. 2017; 3 (10): 61-70p.

Sarkar H, Bera B, Kundu S. Sleep Mode Transistor Sizing Effect of MTCMOS Inverter Circuit on Performance in Deep Submicron Technology. Global Journal of Trends in Engineering. 2015; 2 (4): 131-140p.

Bera B, Sarkar MD. Piezoelectric Effect, Piezotronics and Piezophototronics: A Review. Imperial Journal of Interdisciplinary Research. 2016; 2 (11): 1407-1410p.

Martin C. Template synthesis of electronically conductive polymer nanostructures. Acc Chem Res. 1995; 28 (2): 61–68p.

Guo DJ, Li HL. Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon. 2005; 43 (6): 1259–1264p.

Tan KH, Mohd RJ. Surface structure and optical property of amorphous carbon nanotubes hybridized with cadmium selenide quantum dots. Journal of Nanoparticle Research. 2013; 15 (9): 2-12p.

Ebbesen TW, Ajayan PM. Large-scale synthesis of carbon nanotubes. Nature. 1992; 358: 220p.

Thess A, Lee R, Nikolaev P, Dai HJ, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE. Science. 1996; 273: 483p.

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004; 306 (5696): 666-669p.

Xu Y, Liu J. Graphene as Transparent Electrodes: Fabrication and New Emerging Applications. 2016; 12 (11): 1400–1419p.

Pumera M. Graphene-based nanomaterials for energy storage, Energy Environ. Sci. 2011; 4: 668-674p.

Zhang Y, Tang Q, He B, Yang P. Graphene enabled all-weather solar cells for electricity harvest from sun and rain. J. Mater. Chem. A. 2016; 4: 13235-13241p.

Kim H, Ahn JH. Graphene for flexible and wearable device applications. Carbon. 2017; 120: 244-257p.

Machado BF, Serp P. Graphene-based materials for catalysis. Catal. Sci. Technol. 2012; 2: 54-75p.

Miller JR, Outlaw RA, Holloway BC. Graphene Double-Layer Capacitor with ac Line-Filtering Performance. Science. 2010; 329 (5999): 1637-1639p.

Berman D, Erdemir A, Sumant AV. Graphene: a new emerging lubricant. Materials Today. 2014; 17 (1): 31-42p.

Copuroglu M, Aydogan P, Polat EO, Kocabas C, Süzer S. Gate-Tunable Photoemission from Graphene Transistors. Nano Lett. 2014; 14 (5): 2837–2842p.

Han Y, Xu Z, Gao C. Ultrathin Graphene Nanofiltration Membrane for Water Purification. Advanced Functional Materials. 2013; 23 (29): 3693–3700p.

Rodrigues GC, Zelenovskiy P, Romanyuk K, Luchkin S, Kopelevich Y, Kholkin A. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates. Nat. Commun. 2015; 7: 7572p.

Smith RJ, King PJ, Lotya M, Wirtz C, Khan U, De S, Neill AO, Duesberg GS, Grunlan JC, Moriarty G, Chen J, Wang J, Minett AI, Nicolosi V, Coleman JN. Adv. Mater. 2011; 23: 3944–3948p.

Coleman JN, Lotya M, Neill AO, Bergin AD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V. Science. 2011; 331: 568–571p.

Cunningham G, Lotya M, Cucinotta CS, Sanvito S, Bergin SD, Menzel R, Shaffer MSP, Coleman JN. ACS Nano. 2012; 6: 3468–3480p.

Bang GS, Nam KW, Kim JY, Shin J, Choi JW, Choi SY. Effective Liquid-Phase Exfoliation and Sodium Ion Battery Application of MoS2 Nanosheets. ACS Appl. Mater. Interfaces. 2014; 6: 7084−7089p.

Zhang XH, Wang C, Xue MQ, Lin BC, Ye X, Lei WN. Hydrothermal Synthesis and Characterization Of Ultrathin MoS2 nanosheets. Chalcogenide Letters. 2016; 13 (1): 27–34p.

Sun T, Li Z, Liu X, Ma L, Wang J, Yang S. Facile construction of 3D graphene/MoS2 composites as advanced electrode materials for supercapacitors. Journal of Power Sources. 2016; 331: 180-188p.

Wang L, Ma Y, Yang M, Qi Y. Titanium plate supported MoS2nanosheet arrays for super capacitor application. Applied Surface Science. 2017; 396: 1466-71p; .

Balendhran S, Ou JZ, Bhaskaran M, Sriram S, Ippolito S, Vasic Z, Kats E, Bhargava S, Zhuiykov S, Kalantar-zadeh K. Nanoscale, 2012; 4: 461–466p.

Lee YH, Zhang XQ, Zhang W, Chang MT, Lin CT, Chang KD, Yu YC, Wang JTW, Chang CS, Li LJ, Lin TW. Adv. Mater. 2012; 24: 2320–2325p.

Ling X, Lee YH, Lin Y, Fang W, Yu L, Dresselhaus MS, Kong J. Nano Lett. 2014; 14: 464–472p.

Ji Q, Zhang Y, Gao T, Zhang Y, Ma D, Liu M, Chen Y, Qiao X, Tan PH, Kan M, Feng J, Sun Q, Liu Z. Nano Lett. 2013; 13: 3870–3877p.

Zhang J, Yu H, Chen W, Tian X, Liu D, Cheng M, Xie G, Yang W, Yang R, Bai X, Shi D, Zhang G. ACS Nano. 2014; 8: 6024–6030p.

Lin YC, Zhang W, Huang JK, Liu KK, Lee YH, Liang CT, Chu CW, Li LJ. Nanoscale. 2012; 4: 6637–6641p.

Qiu d, Lee DU, Pak SW, Kim EK. Thin Solid Films. 2015; 587: 47–51p.

Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A, Baillargeat D. From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv. Funct. Mater. 2012; 22: 1385–1390p.

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science. 2004; 306: 666p .

Claudia Altavilla, Maria Sarno, and Paolo Ciambelli. A Novel Wet Chemistry Approach for the Synthesis of Hybrid 2D Free-Floating Single or Multilayer Nanosheets of MS2@oleylamine (MdMo, W). Chem. Mater. 2011; 23: 3879–3885p.

Ashish Kumar Mishra, K. V. Lakshmi & Liping Huang. Eco-friendly synthesis of metal dichalcogenides nanosheets and their environmental remediation potential driven by visible light. Scientific Reports | 2015; 5: 15718p. DOI: 10.1038/srep15718.

M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, H. W. Kroto. J. Phys. Chem. Solids 1993; 54: 1841p.

Tan Kim Han. synthesis and characterizations of amorphous carbon nanotubes/cadmium selenide quantum dots hybrids materials. master thesis, university of Malaya. 2012; 1-120p

P. Cui, B. Xie, X. Li, M. Li, Y. Li, Y. Wang, Z. Liu, X. Liu, J. Huang, D. Song, J.M.M bengue. Anatase/TiO2-B hybrid microspheres constructed from ultrathin nanosheets: facile synthesis and application for fast lithium ion storage. Cryst Eng Comm 2015; 17: 7930–7937p.

T. Stephenson, Z. Li, B. Olsen, D. Mitlin. Lithium ion battery applications ofmolybdenum disulfide (MoS2) nanocomposites. Energ. Environ. Sci. 2014; 7: 209–231p.

H. Hwang, H. Kim, J. Cho. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011; 11: 4826–4830p.

R. Dominko, D. Arcon, A. Mrzel, A. Zorko, P. Cevc, P. Venturini, M. Gaberscek,M. Ramskar, D. Mihailovic. Dichalcogenide nanotube electrodes for Li-ionbatteries. ChemInform 2003; 34: 1531–1534p.

H. Li, W. Li, L. Ma, W. Chen, J. Wang. Electrochemical lithiation/delithiation performances of 3D flowerlike MoS2 powders prepared by ionic liquid assisted hydrothermal route, J. Alloy Compd. 2009; 471: 442–447p.

Y. Kim, J.B. Goodenough. Lithium insertion into transition-metal mono sulfides: tuning the position of the metal 4s band. J. Phys. Chem. C 2008; 112: 15060–15064p.

X. Wang, Q. Xiang, B. Liu, L. Wang, T. Luo, D. Chen, G. Shen. TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries. Sci. Rep. 2013; 3: 10454–10461p.

L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E.J. Cairns, Y. Zhang. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011; 133: 18522–18525p.

Q. Fan, P.J. Chupas, M.S. Whittingham. Characterization of amorphous and crystalline tin–cobalt anodes. Electro chem. Solid State 2007; 10(12): A274-A278p.

T. Matsuyama, A. Hayashi, T. Ozaki, S. Mori, M. Tatsumisago. Electro chemical properties of all-solid-state lithium batteries with amorphous MoS3electrodes prepared by mechanical milling. J. Mater. Chem. A. 2015; 3: 14142–14147p.

E. Hüger, L. Dörrer, J. Rahn, T. Panzner, J. Stahn, G. Lilienkamp, H. Schmidt. Lithium transport through nanosized amorphous silicon layers. Nano Lett. 2013: 13: 1237–1244p.

X. Li, X. Meng, J. Liu, D. Geng, Y. Zhang, M.N. Banis, Y. Li, J. Yang, R. Li, X. Sun,M. Cai, M.W. Verbrugge. Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv. Funct. Mater. 2012; 22: 1647–1654p.

H. Ghassemi, M. Au, N. Chen, P.A. Heiden, R.S. Yassar. In situ electro chemical lithiation/delithiation observation of individual amorphous Si nanorods, ACS Nano. 2011; 5: 7805–7811p.

Y. Jiang, D. Zhang, Y. Li, T. Yuan, N. Bahlawane, C. Liang, W. Sun, Y. Lu, M. Yan. Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode materialfor lithium ion batteries. Nano Energy. 2014; 4: 23–30p.

J. Guo, Q. Liu, C. Wang, M.R. Zachariah. Interdispersed amorphousMnOx–carbon nanocomposites with superior electrochemical performance aslithium-storage material. Adv. Funct. Mater. 2012; 22: 803–811p.

J.H. Ku, J.H. Ryu, S.H. Kim, O.H. Han, S.M. Oh. Reversible lithium storage with high mobility at structural defects in amorphous molybdenum dioxide electrode. Adv. Funct. Mater. 2012; 22: 3658–3664p.

F. Zhou, S. Xin, H.-W. Liang, L.-T. Song, S.-H. Yu. Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and enhanced electrochemical performance. Angew. Chem. Int. Ed. 2014; 53: 11552–11556p.

D. Shujiang, C. Jun Song, X.W.D. Lou. Glucose-assisted growth of MoS2nanosheets on CNT backbone for improved lithium storage properties, Chemistry. Weinheim an der Bergstrasse, Germany. 2011; 17: 13142–13145p.

K. Chang, W. Chen. L-Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries, ACS Nano. 2011; 5: 4720–4728p.

X. Zhou, Z. Wang, W. Chen, L. Ma, D. Chen, J.Y. Lee. Facile synthesis and electrochemical properties of two dimensional layered MoS2/graphene composite for reversible lithium storage. J. Power Sources 2014; 251: 264–268p.

P. Seung-Keun, Y. Seung-Ho, W. Seunghee, Q. Bo, L. Dong-Chan, K.M. Kun, S.Yung-Eun, P. Yuanzhe. A simple L-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries. Dalton Trans. 2012; 42: 2399–2405p.

Y. Shi, Y. Wang, J.I. Wong, A.Y.S. Tan, C.-L. Hsu, L.-J. Li, Y.-C. Lu, H.Y. Yang. Self-assembly of hierarchical MoSx/CNT nanocomposites (2<x<3):towards high performance anode materials for lithium ion batteries. Sci. Rep. 2013; 3: 2169p .

Z. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng, Z. Tao, J. Chen. MoS2 nano flowers with expanded interlayers as high-performance anodes for sodium-Ion batteries. Angew. Chem. Int. Ed. 2014; 53: 12794–12798p.

R. R. Chianelli, E. B. Prestridge, T. A. Pecoraro, and J. P. DeNeufville. Science 1979; 203: 1105–1107p.

J. L. Verble, T. J. Wietling, and P. R. Reed. Rigid-layer lattice vibrations and van der waals bonding in hexagonal MoS2. Solid State Comm. 1972; 11: 941-944p.

V. R. Surisetty, A. Tavasoli, and A. K. Dalai. Synthesis of higher alcohols from syngas over alkali promoted MoS2 catalysts supported on multi-walled carbon nanotubes. Appl. Catal. A-Gen. 2009: 365: 243–251p.

Y. Ye, J. Chen, and H. Zhou. An investigation of friction and wear performances of bonded molybdenum disulfide solid film lubricants in fretting conditions. Wear 2009; 266: 859–864p.

J. Yan, H. Zhou, P. Yu, L. Su, and L. Mao. A general electrochemical approach to deposition of metal hydroxide/oxide nanostructures onto carbon nanotubes. Electrochem. Commun. 2018; 10: 761–765p.

C. Feng, J. Ma, H. Li, R. Zeng, Z. Guo, and H. Liu. Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater. Res. Bull. 2009; 44: 1811–1815p.

N. Elizondo-Villarreal, R. Vel´azquez-Castillo, D. H. Galv´an, A. Camacho, andM. Jos´e Yacam´an. Structure and catalytic properties of molybdenum

sulfide nanoplatelets. Appl. Catal. A-Gen. 2017; 328: 88–97p.

X. Zhang, B. Luster, A. Church, C. Muratore, A. A. Voevodin, P. Kohli, S. Aouadi, and S. Talapatra. Carbon Nanotube-MoS2 Composites as Solid Lubricants. Appl. Mater. Inter. 2009:3: 735–739p.

W. Li, E. Shi, J. Ko, Z. Chen, H. Ogino, and T. Fukuda. Hydrothermal synthesis of MoS2 nanowires. J. Cryst. Growth 2013; 250: 418–422p.

K. P. Loh, H. Zhang, W. Z. Chen, and W. Ji. Templated deposition of MoS2 nanotubules using single source precursor and studies of their optical limiting properties. J. Phys. Chem. B. 2016; 110: 1235–1239p.

L. Ma, L. M. Xu, X. Y. Xu, Y. L. Luo, andW. X. Chen. Synthesis and characterization of flowerlike MoS2 microspheres by a facile hydrothermal route. Mater. Lett. 2009; 63: 2022–2024p.

G. Chu, G. Bian, Y. Fu, and Z. Zhang. Preparation and structural characterization of nano-sized amorphous powders of MoS by γ -irradiation method. Mater. Lett. 2000; 43: 81–86p.

Z. Wu, D. Wang, and A. Sun. PreparationofMoS2 nanoflakes by a novel mechanical activation method. J. Cryst. Growth. 2010; 312: 340–343p.

M. Virˇsek, A. Jesih, I. Miloˇsevi´c, M. Damnjanovi´c, and M. Remˇskar. Raman scattering of the MoS2 and WS2 single nanotubes. Surf. Sci. 2007; 601: 2868–2872p.

X. Feng, Q. Tang, J. Zhou, J. Fang, P. Ding, L. Sun and L. Shi, Cryst. Res. Technol. 2013; 48: 363–368p.

C. Muratore, V. Varshney, J. J. Gengler, J. Hu, J. E. Bultman, A. K. Roy, B. L. Farmer and A. A. Voevodin. Phys. Chem. 2014; 16: 1008–1014p.


  • There are currently no refbacks.

Copyright (c) 2019 Nano Trends-A Journal of Nano Technology & Its Applications