Open Access Open Access  Restricted Access Subscription or Fee Access

Cotton Diseases (verticillium dahlia) and Its Solutions by Using Different Techniques

Shahid Nadeem, Muhammad Hassan, Sana Fazil, Sherza Dayal, Rizwan Ahmed, Shafiq ur Rehman Zia, Ali Haider, Umair Waqas

Abstract


Cotton is imperative economically crop for diverse countries and play critical role in economy of any countries. Cotton is threatened by frequent reasons like pests and pathogen disease and preventing the plant growth. Cotton is implanting all over the world, like in central and eastern Asia, southern United States, West Africa, Brazil, India, China, and Australia, which is a cotton fiber exporter. India, China, Pakistan, and USA, which is a great cotton producer. Pest comprise fungus (verticillium dahlia), which caused soil intrinsic vascular infection called Verticillium wilt, which consequence the fractional of cotton planting zones and diminution the yield of cotton. There are numerous technique and methods are used to solve the problems or get rid of diseases, which effect the cotton plant. Processes of monitoring pest and disease in cotton typically contain pesticides broadcast, environmental controller, natural regulator and artificial deceptive, and pesticides also used for control the pest and pathogen. There are three traditions used to acclimate the genetic material: pollen tube pathway, bioplastic particle transfer, and agrobacterium altered genetic transformation. Nanotechnology is used to resolve the agriculture glitches like plant hormones, seed nascent, water handling, and transmission of boarding genetic factor, nano barcoding, nano sensors, and control release of agrichemicals. Nanotechnology used as protectants, transporters for insecticide, fungicide, herbicide, double shipwrecked RNA for RNA intrusive intervened defense. The control of these diseases is chief challenges for all over the world. Controller pest and disease is serious to growing cotton which recover extra 900,000 tons yearly cottons by diseases and pests controller.

Full Text:

PDF

References


Tarazi R, Jimenez JLS, Vaslin MFS. Biotechnological solutions for major cotton (Gossypium hirsutum) pathogens and pests. Biotechnol Res Innov. 2019; 3: 19–26. doi: 10.1016/j.biori.2020.01.001.

Fradin EF, Abd-El-Haliem A, Masini L, van den Berg GC, Joosten MH, Thomma BP. Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiol. 2011; 156 (4): 2255–2265. doi: 10.1104/pp.111.180067, PMID 21617027.

Chen P, Xiao Q, Zhang J, Xie C, Wang B. Occurrence prediction of cotton pests and diseases by bidirectional long short-term memory networks with climate and atmosphere circulation. Comput Electron Agric. 2020; 176: 105612. doi: 10.1016/j.compag.2020.105612.

Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014; 25 (4): 501–515. doi: 10.1016/j.ccr.2014.03.007, PMID 24735924.

Wu K, Lu Y, Wang Z. Advance in integrated pest management of crops in China. Chin Bull Entomol. 2009; 46 (6): 831–836.

Mehta YR, Marangoni MS, Bocatti CR, Rodrigues HP, Cunha TS, Galbieri R. Systemic acquired resistance of cotton, soybean and common bean to Rhizoctonia solani and Sclerotium rolfsii induced by shale water seed treatment. Am J Plant Sci. 2015; 6 (09): 1493.

Cia E, Fuzatto MG, Kondo JI, Carvalho LH, Ito MF, Dias FLF et al. Response of cotton genotypes to the incidence of Alternaria leaf spot. Summa Phytopathol. 2016; 42 (4): 357–359. doi: 10.1590/0100-5405/2119.

Rothrock CS, Woodward JE, Kemerait Jr RC. Diseases. Cotton. 2015; 57: 465–507.

Galbieri R, Araújo DCEB, Kobayasti L, Girotto L, Matos JN, Marangoni MS et al. Corynespora leaf blight of cotton in Brazil and its management. Am J Plant Sci. 2014; 05 (26): 3805–3811. doi: 10.4236/ajps.2014.526398.

Wu KM, Guo YY. The evolution of cotton pest management practices in China. Annu Rev Entomol. 2005; 50: 31–52. doi: 10.1146/annurev.ento.50.071803.130349, PMID 15355239.

Armengaud P, Breitling R, Amtmann A. Coronatine-insensitive 1 (COI1) mediates transcriptional responses of Arabidopsis thaliana to external potassium supply. Mol Plant. 2010; 3 (2): 390–405. doi: 10.1093/mp/ssq012, PMID 20339157.

Wallis C, Eyles A, Chorbadjian RA, Riedl K, Schwartz S, Hansen R et al. Differential effects of nutrient availability on the secondary metabolism of Austrian pine (Pinus nigra) phloem and resistance to Diplodia pinea. Forest Pathol. 2011; 41 (1): 52–58. doi: 10.1111/j.1439- 0329.2009.00636.x.

Luo J, Shuai Z, Ren X, Limin L, Zhang L, Ji J et al. Research progress of cotton insect pests in china in recent ten years. Cotton Sci. 2017; 9: 100–112. 14. Singh S, Gupta M, Pandher S, Kaur G, Rathore P, Palli SR. Selection of housekeeping genes and demonstration of RNAi in cotton leafhopper, Amrasca biguttula biguttula (Ishida). PLOS ONE. 2018; 13 (1): e0191116. doi: 10.1371/journal.pone.0191116, PMID 29329327.

Xu L, Zhu L, Tu L, Liu L, Yuan D, Jin L et al. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot. 2011; 62 (15): 5607–5621. doi: 10.1093/jxb/err245, PMID 21862479.

Corradini E, Foglia P, Giansanti P, Gubbiotti R, Samperi R, Lagana A. Flavonoids: chemical properties and analytical methodologies of identification and quantitation in foods and plants. Nat Prod Res. 2011; 25 (5): 469–495. doi: 10.1080/14786419.2010.482054, PMID 21391112.

Ghormade V, Deshpande MV, Paknikar KM. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv. 2011; 29 (6): 792–803. doi: 10.1016/j.biotechadv.2011.06.007, PMID 21729746.

Treutter D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol (Stuttg). 2005; 7 (6): 581–591. doi: 10.1055/s-2005-873009, PMID 16388461.

Raghothama KG, Karthikeyan AS. Phosphate acquisition. Plant Soil. 2005; 274 (1–2): 37.

Péret B, Clément M, Nussaume L, Desnos T. Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci. 2011; 16 (8): 442–450. doi: 10.1016/j.tplants.2011.05.006, PMID 21684794.

Nix A, Paull C, Colgrave M. Flavonoid profile of the cotton plant, Gossypium hirsutum: a review. Plants (Basel). 2017; 6 (4): 43. doi: 10.3390/plants6040043, PMID 28946657.

Lord JC. Desiccant dusts synergize the effect of Beauveria bassiana (Hyphomycetes: Moniliales) on stored-grain beetles. J Econ Entomol. 2001; 94 (2): 367–372. doi: 10.1603/0022-0493-94.2.367, PMID 11332827.

Hayles J, Johnson L, Worthley C, Losic D. Nanopesticides: a review of current research and perspectives. In: New pesticides and soil sensors. Cambridge, MA, USA: Academic Press; 2017. pp. 193-225.

Ashraf J, Zuo D, Wang Q, Malik W, Zhang Y, Abid MA et al. Recent insights into cotton functional genomics: progress and future perspectives. Plant Biotechnol J. 2018; 16 (3): 699–713. doi: 10.1111/pbi.12856, PMID 29087016.

Cui JJ, Chen HY, Zhao XH, Luo JY. Research course of the cotton IPM and its prospect. Cotton Sci. 2007; 19 (5): 385–390.

Gao W, Long L, Zhu LF, Xu L, Gao WH, Sun LQ et al. Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol Cell Proteomics. 2013; 12 (12): 3690–3703. doi: 10.1074/mcp.M113.031013, PMID 24019146.

Stephenson GR. Pesticide use and world food production: risks and benefits; 2003.

Han YS, Lee SY, Yang JH, Soo Hwang HS, Park I. Paraquat release control using intercalated montmorillonite compounds. J Phys Chem Solids. 2010; 71 (4): 460–463. doi: 10.1016/j.jpcs.2009.12.011.

Salustiano ME, Rondon MN, Abreu LM, Costa SDS, Machado JDC, Pfenning LH. The etiological agent of cotton ramulosis represents a single phylogenetic lineage within the Colletotrichum gloeosporioides species complex. Trop Plant Pathol. 2014; 39 (5): 357–367. doi: 10.1590/S1982-

Shete PP, Kasal YG, Perane RR. Screening of the cotton genotypes against Ramularia areola at. under field condition. Plant Arch. 2018; 18 (1): 734–736.

Naqvi RZ, Zaidi SSEA, Mukhtar MS, Amin I, Mishra B, Strickler S et al. Transcriptomic analysis of cultivated cotton Gossypium hirsutum provides insights into host responses upon whiteflymediated transmission of cotton leaf curl disease. PLOS ONE. 2019; 14 (2): e0210011. doi: 10.1371/journal.pone.0210011, PMID 30730891.

Allen KC, Luttrell RG, Sappington TW, Hesler LS, Papiernik SK. Frequency and abundance of selected early-season insect pests of cotton. J Integr Pest Manag. 2018; 9 (1): 20. doi: 10.1093/jipm/pmy010.

Weaver DB. Cotton nematodes. Cotton. 2015; 57: 547–570.

OECD, F. OECD-FAO agricultural outlook 2015. Paris, France: Organization for Economic Cooperation and Development; 2015.

Nix J, Pickett JT. Third-person perceptions, hostile media effects, and policing: developing a theoretical framework for assessing the Ferguson effect. J Crim Justice. 2017; 51: 24–33. doi: 10.1016/j.jcrimjus.2017.05.016.

Tan J, Wang M, Tu L, Nie Y, Lin Y, Zhang X. The flavonoid pathway regulates the petal colors of cotton flower. PLOS ONE. 2013; 8 (8): e72364. doi: 10.1371/journal.pone.0072364, PMID 23951318.

Luo T, Xu K, Luo Y, Chen J, Sheng L, Wang J et al. Distinct carotenoid and flavonoid accumulation in a spontaneous mutant of ponkan (Citrus reticulata Blanco) results in yellowish fruit and enhanced postharvest resistance. J Agric Food Chem. 2015; 63 (38): 8601–8614. doi: 10.1021/acs.jafc.5b02807, PMID 26329679.

Li C, He X, Luo X, Xu L, Liu L, Min L et al. Cotton WRKY1 mediates the plant defense-todevelopment transition during infection of cotton by Verticillium dahliae by activating jasmonate ZIM-domain1 expression. Plant Physiol. 2014; 166 (4): 2179–2194. doi: 10.1104/pp.114.246694, PMID 25301887.

Zhang R, Meng Z, Abid MA, Zhao X. Novel pollen magnetofection system for transformation of cotton plant with magnetic nanoparticles as gene carriers. In: Methods in Molecular Biology (Clifton, N.J.). New York, NY: Humana Press; 2019. pp. 47–54. doi: 10.1007/978-1-4939-8952- 2_4, PMID 30543060.

Flachs A. Transgenic cotton: high hopes and farming reality. Nat Plants. 2017; 3 (1): 16212. doi: 10.1038/nplants.2016.212, PMID 28059089.

Zhang B, Wang Q. MicroRNA‐based biotechnology for plant improvement. J Cell Physiol. 2015; 230 (1): 1–15. doi: 10.1002/jcp.24685, PMID 24909308.

Gao W, Long L, Tian X, Xu F, Liu J, Singh PK et al. Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci. 2017; 8: 1364. doi: 10.3389/fpls.2017.01364, PMID 28824692.

Kah M, Hofmann T. Nanopesticide research: current trends and future priorities. Environ Int. 2014; 63: 224–235. doi: 10.1016/j.envint.2013.11.015, PMID 24333990.

Liu Y, Yan L, Heiden P, Laks P. Use of nanoparticles for controlled release of biocides in solid wood. J Appl Polym Sci. 2001; 79 (3): 458–465. doi: 10.1002/1097- 4628(20010118)79:3<458::AID-APP80>3.0.CO;2-H.

Han P, Niu CY, Lei CL, Cui JJ, Desneux N. Use of an innovative T-tube maze assay and the proboscis extension response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L. Ecotoxicology. 2010; 19 (8): 1612–1619. doi: 10.1007/s10646-010-0546-4, PMID 20872243.

Abigail M EA, Samuel S M, Chidambaram R. Application of rice husk nanosorbents containing 2,4 dichlorophenoxyacetic acid herbicide to control weeds and reduce leaching from soil. J Taiwan Inst Chem Eng. 2016; 63: 318–326. doi: 10.1016/j.jtice.2016.03.024.

Ziegler J, Schmidt S, Chutia R, Müller J, Böttcher C, Strehmel N et al. Non-targeted profiling of semi-polar metabolites in Arabidopsis root exudates uncovers a role for coumarin secretion and lignification during the local response to phosphate limitation. J Exp Bot. 2016; 67 (5): 1421–1432. doi: 10.1093/jxb/erv539, PMID 26685189.

Luo B, Ma P, Nie Z, Zhang X, He X, Ding X et al. Metabolite profiling and genome‐wide association studies reveal response mechanisms of phosphorus deficiency in maize seedling. Plant J. 2019; 97 (5): 947–969. doi: 10.1111/tpj.14160, PMID 30472798.

Song MR, Cui SM, Gao F, Liu YR, Fan CL, Lei TQ et al. Dispersible silica nanoparticles as carrier for enhanced bioactivity of chlorfenapyr. J Pestic Sci. 2012; 37 (3): 258–260. doi: 10.1584/jpestics.D12-027.

Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA. 2006; 103 (48): 18054–18059. doi: 10.1073/pnas.0605389103, PMID 17110445.

Hang J, Zhang D, Chen P, Zhang J, Wang B. Classification of plant leaf diseases based on improved convolutional neural network. Sensors (Basel). 2019; 19 (19): 4161. doi: 10.3390/s19194161, PMID 31557958.




DOI: https://doi.org/10.37591/nanotrends.v25i1.1418

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Nano Trends-A Journal of Nano Technology & Its Applications