Open Access Open Access  Restricted Access Subscription or Fee Access

Synthesis, Characterization of MoS2 Nanosheets, Amorphous Carbon Nanotube (ACNT) and ACNT-MoS2 Nanohybrids: A Comparative Research Analysis

Binoy Bera


The superior properties of graphene and its applications in several fields like sensor, electronics, etc have inspired the researchers to concentrate on other 2D material and their hybrids. Among them, MoS2 nanosheets has gain research interest due to its amazing electronic, optical and physical properties. Due to all these properties, MoS2 nanosheets are used in numerous applications such as catalysis, photo emitting diode, double layer capacitors, lithium-ion batteries, etc. Here, MoS2 nanosheets and ACNT-MoS2 nanohybrids has been prepared by simple hydrothermal method. Amorphous carbon nanotube (ACNT) were synthesized by a low temperature chemical process using the ferrocene (C5H5)2Fe) and ammonium chloride (NH4Cl) as precursor. MoS2 nanosheets has been prepared by using thiourea and hexaammonium heptamolybdate tetrahydrate as precursors. Two (MOS2 nanosheets and ACNT-MOS2 nanohybrids) as prepared samples were characterized by FE-SEM, XRD, FT-IR, etc. UV-visible spectroscopy showed change of optical properties of ACNT-MoS2 nanohybrid in comparison with MoS2 nanosheets. A brief idea about the synthesis procedure for ACNT-MoS2 nanohybrids by using solvothermal method was also presented. Finally a theoretical and practical analysis of ACNT-MoS2 and as prepared ACNT-MoS2 nanohybrid samples has been described.


MoS2, nanosheets, chemical synthesis, amorphous carbon nanotube, hydrothermal, nanohybrids, solvothermal method

Full Text:



S Iijima. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58.

G Eda, HE Unalan, N Rupesinghe, GAJ Amaratunga, M Chhowalla. Appl. Phys. Lett. 2008;93:233502.

Y Liu, J Tang, X Chen, W Chen, GKH Pang, JH Xin. A wet-chemical route for the decoration of CNTs with silver nanoparticles. Carbon. 2006;44(2):381–383.

Z Zanolli, R Leghrib, A Felten, J Pireaux, E Llobet, J Charlier. Gas sensing with Au-decorated carbon nanotubes. Journal of American Chemical Society. 2011;6(5):4592–4599.

T Zhao et al. Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes. Sci. Rep. 2014;4:5619. DOI:10.1038/srep05619.

DJ Guo and HL Li. Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon. 2005;43(6):1259–1264.

B Bera. Literature Review on Electrospinning Process (A Fascinating Fiber Fabrication Technique). Imperial Journal of Interdisciplinary Research. 2016;2(8).

B Bera, Madhumita Das Sarkar. Piezoelectricity in PVDF and PVDF Based Piezoelectric Nanogenerator: A Concept. IOSR Journal of Applied Physics. 2017;9(3):95–99.

Binoy Bera, Dipankar Mandal, Madhumita Das Sarkar. Sensor Made of PVDF/graphene Electrospinning Fiber and Comparison between Electrospinning PVDF Fiber and PVDF/graphene Fiber. Imperial Journal of Interdisciplinary Research. 2016;2(5).

Binoy Bera, Madhumita Das, Sarkar. Gold Nanoparticle Doped PVDF Nanofiber Preparation of Concurrently Harvesting Light and Mechanical Energy. IOSR Journal of Applied Physics. May-June 2017;9(3):5–12.

Binoy Bera, Madhumita Das Sarkar. PVDF based Piezoelectric Nanogenerator as a new kind of device for generating power from renewable resources. IOSR Journal of Polymer and Textile Engineering. Mar.-Apr. 2017;4(2):1–5.

Binoy Bera. Preparation of polymer nanofiber and its application. Asian Journal of Physical and Chemical Sciences. 2017;2(4):1–4. article no. AJOPACS. 35651.

Binoy Bera. Literature Review on Triboelectric Nanogenerator. Imperial Journal of Interdisciplinary Research. January 2016;2(10):1263–1271.

Binoy Bera. Preparation of MoS2 nanosheets and PVDF nanofiber. Asian Journal of Physical and Chemical Sciences. 2017;2(4):1–9. article no. AJOPACS. 35176.

Binoy Bera. Nanoporous Silicon Prepared by Vapour Phase Strain Etch and Sacrificial Technique. IJCA Proceedings on International Conference on Microelectronic Circuit and System MICRO. 2015(1):42–45.

Binoy Bera, Dipankar Mandal, Madhumita Das Sarkar. Porous Silicon and its Nanoparticle as Biomaterial: A Review. Imperial Journal of Interdisciplinary Research. 2016;2(11):4.

Binoy Bera. A Review on Polymer, Graphene and Carbon Nanotube: Properties, Synthesis and Applications. Imperial Journal of Interdisciplinary Research. 2017;3(10).

Hari Sarkar, Binoy Bera, Sudakshina Kundu. Sleep Mode Transistor Sizing Effect of MTCMOS Inverter Circuit on Performance in Deep Submicron Technology. Global Journal of Trends in Engineering. 2015;2(4).

Binoy Bera, Madhumita Das Sarkar. Piezoelectric Effect, Piezotronics and Piezo phototronics: A Review. Imperial Journal of Interdisciplinary Research. 2016;2(11).

Bruno F Machado, Philippe Serp. Graphene-based materials for catalysis.

Catal. Sci. Technol. 2012;2:54–75. DOI:10.1039/C1CY00361E.

John R Miller, RA Outlaw, BC Holloway. Graphene Double-Layer Capacitor with ac Line-Filtering Performance. Science. 24 Sep 2010;329(5999):1637–1639. DOI: 10.1126/science.1194372.

Diana Berman, Ali Erdemir, Anirudha V Sumant. Graphene: a new emerging lubricant. Materials Today. January–February 2014;17(1):31–42.

Mehmet Copuroglu, Pinar Aydogan, Emre O Polat, Coskun Kocabas, Sefik Süzer. Gate-Tunable Photoemission from Graphene Transistors. Nano Lett. 2014, 14 (5):2837–2842. DOI: 10.1021/nl500842y.

Hamid Ghorbani Shiraz, Omid Tavakoli. Investigation of graphene-based systems for hydrogen storage. Renewable and Sustainable Energy Reviews. July 2017;74:104–109.

Yi Han, Zhen Xu, Chao Gao. Ultrathin Graphene Nanofiltration Membrane for Water Purification. Advanced Functional Materials. 2013;23(29):3693–3700. DOI: 10.1002/adfm.201202601.

Gonçalo da Cunha Rodrigues, Pavel Zelenovskiy, Konstantin Romanyuk, Sergey Luchkin, Yakov Kopelevich Andrei Kholkin. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates. Nat. Commun. 2015;7:7572 doi:10.1038/ncomms8572.

Guoxing Li, Yuliang Li, Huibiao Liu, Yanbing Guo, Yongjun Li, Daoben Zhu. Architecture of graphdiyne nanoscale films. Chemical Communications. 2010;46(19):3256–3258. doi:10.1039/B922733D.

L Li, Y Yu, GJ Ye, Q Ge, X Ou, H Wu, D Feng, XH Chen, Y Zhang. (). Black phosphorus field-effect transistors. Nature Nanotechnology. 2014;9(5):372–377. doi:10.1038/nnano.2014.35.

Binoy Bera, Diptonil Banerjee. Preparation and Characterization of Amorphous Carbon Nanotube-MoS2 Nanohybrid. International Journal of Research in Engineering, Science and Management. August 2019;2(8):5–8.

Binoy Bera. Synthesis, Properties and Applications of Amorphous Carbon Nanotube and MoS2 Nanosheets: A Review. Nano Trends: A Journal of Nanotechnology and Its Applications. 2019; 21(1): 36–52p.

Binoy Bera, Diptonil Banerjee. A Detail Opto-electronic and Photocatalytic Study of Amorphous Carbon Nanotubes—MoS2 Hybrids. Nano Trends: A Journal of Nanotechnology and Its Applications. 2019; 21(2): 19–30p.

Kin Fai Mak, Changgu Lee, James Hone, Jie Shan, Tony F Heinz. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters. 2010;105(13). doi:10.1103/physrevlett.105.136805.

ZA Piazza, HS Hu, WL Li, YF Zhao, J Li, LS Wang (2014). Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nature Communications. 5: 3113. doi:10.1038/ncomms4113.

QH Wang, K Kalantar-Zadeh, A Kis, JN Coleman, MS Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012;7:699–712.

FHL Koppens, T Mueller, P Avouris, AC Ferrari, MS Vitiello, M Polini. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014;9:780–793.

A Castellanos-Gomez, N Agraït, G Rubio-Bollinger. Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett. 2010;96:213116.

H Li, G Lu, Z Yin, Q He, H Li, Q Zhang, H. Zhang. Optical Identification of Single-and Few-Layer MoS2 Sheets. Small. 2012; 8:682–686.

M Buscema, GA Steele, HSJ van der Zant, A Castellanos-Gomez. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014;7:561–571.

K Liu, J Feng, A Kis, A Radenovic. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano. 2014;8:2504–2511. doi:10.1021/nn406102h.

J Brivio, DT Alexander, Kis. Ripples and layers in ultrathin MoS2 membranes. Nano Lett. 2011;11:5148–5153. doi:10.1021/nl2022288.

SV Prabhakar Vattikuti, C Byon. Synthesis and characterization of molybdenum disulfide nanoflowers and nanosheets: Nanotribology. Journal of Nanomaterials. 2015, Article ID 710462, 1–11.

JM Tarascon, M Armand. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359–367.

AS Arico, P Bruce, B Scrosati, JM Tarascon, W van Schalkwijk. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005;4:366–377.

X Li, Y Feng, M Li, W Li, H Wei, D Song. Smart hybrids of Zn2GeO4nanoparticles and ultrathin g-C3N4 layers: synergistic lithium storage and excellent electrochemical performance. Adv. Funct. Mater. 2015;25:6858–6866.

M Armand, JM Tarascon. Building better batteries. Nature. 2008;451:652–657.

B Kang, G Ceder. Battery materials for ultrafast charging and discharging. Nature. 2009;458:190–193.

X Li, W Li, M Li, P Cui, D Chen, T Gengenbach, L Chu, H Liu, G Song. Glucose-assisted synthesis of the hierarchical TiO2 [email protected] nanocomposite and its synergistic lithium storage performance. J. Mater. Chem. A. 2015;3:2762–2769.

D Larcher, S Beattie, M Morcrette, K Edstrom, J-C Jumas, J-M Tarascon. Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J. Mater. Chem. 2007;17:3759–3772.

Y Feng, X Li, Z Shao, H Wang. Morphology-dependent performance of Zn2GeO4 as a high-performance anode material for rechargeable lithium ion batteries. J. Mater. Chem. A. 2015;3:15274–15279.

L Chu, M Li, X Li, Y Wang, Z Wan, S Dou, D Song, Y Li, B Jiang. High performance NiO microsphere anode assembled from porous nanosheets for lithium-ion batteries. RSC Adv. 2015;5:49765–49770.

P Cui, B Xie, X Li, M Li, Y Li, Y Wang, Z Liu, X Liu, J Huang, D Song, JM Mbengue. Anatase/TiO2-B hybrid microspheres constructed from ultrathin nanosheets: facile synthesis and application for fast lithium ion storage. Cryst Eng Comm. 2015;17:7930–7937.

T Stephenson, Z Li, B Olsen, D Mitlin. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energ. Environ. Sci. 2014;7:209–231.

H Hwang, H Kim, J Cho. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials, Nano Lett. 2011;11:4826–4830.

R Dominko, D Arcon, A Mrzel, A Zorko, P Cevc, P Venturini, M Gaberscek, M Ramskar, D Mihailovic. Dichalcogenide nanotube electrodes for Li-ion batteries. Chem Inform. 2003;34:1531–1534.

H Li, W Li, L Ma, W Chen, J Wang. Electrochemical lithiation/delithiation performances of 3D flowerlike MoS2 powders prepared by ionic liquid assisted hydrothermal route. J Alloy Compd. 2009;471:442–447.

Y Kim, JB Goodenough. Lithium insertion into transition-metal monosulfides: tuning the position of the metal 4s band. J. Phys. Chem. C. 2008;112:15060–15064.

X Wang, Q Xiang, B Liu, L Wang, T Luo, D Chen, G Shen. TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries. Sci. Rep. 2013;3:10454–10461.

L Ji, M Rao, H Zheng, L Zhang, Y Li, W Duan, J Guo, EJ Cairns, Y Zhang. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfurcells. J. Am. Chem. Soc. 2011;133:18522–18525.


  • There are currently no refbacks.