Open Access Open Access  Restricted Access Subscription or Fee Access

Synthesis and Characterization of Amorphous Carbon Nanotube-Molybdenum Disulfide (ACNT-MoS2) Nanohybrids using Sodium Molybdate Dehydrate and L-Cysteine as Precursor

Binoy Bera

Abstract


The discovery of graphene makes the researcher interested towards the other two-dimensional material which has quite similar properties like graphene. Among them, MoS2 nanosheets haves extraordinary optoelectronic and physical properties. It has several applications in developing battery, sensor, optoelectronic device etc. On the other hand, amorphous carbon nanotube can be synthesized by using a low temperature chemical process. Due to the ease processing of amorphous carbon nanotube (ACNT), good optoelectronic and physical property based nanomaterial with amorphous carbon nanotube, can be a good replacement of crystalline carbon nanotube in numerous applications. Amorphous carbon nanotube-molybdenum disulfide nanohybrids were prepared by using hydrothermal method using sodium molybdate dehydrate and L-cysteine as precursor. Characterization of as prepared sample was done by Fourier transformed infrared spectroscopy, field-emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM) method. FE-SEM and HRTEM image confirms the formation of ACNT-MoS2 nanohybrids. I-V curve under dark and illumination condition has also been experimented.

 


Keywords


Amorphous carbon nanotube, field-emission scanning electron microscope, MoS2 nanosheets, nanohybrids, transmission electron microscope

Full Text:

PDF

References


KS Novoselov, AK Geim, SV Morozov, D Jiang, Y Zhang, SV Dubonos, IV Grigorieva, AA Firsov. Electric field effect in atomically thin carbon films. Science. 2004; 306(5696): 666–669.

Yuanhong Xu, Jingquan Liu. Graphene as transparent electrodes: fabrication and new emerging applications. Small. 2016; 12(11): 1400–1419. doi: 10.1002/smll.

Martin Pumera. Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 2011; 4: 668–674. doi:10.1039/C0EE00295J.

Yue Zhang, Qunwei Tang, Benlin He, Peizhi Yang. Graphene enabled all-weather solar cells for electricity harvest from sun and rain. J. Mater. Chem. A. 2016; 4: 13235–13241. doi:10.1039/C6TA05276B.

Hyunmin Kim, Jong-Hyun Ahn. Graphene for flexible and wearable device applications. Carbon. 2017; 120: 244–257. https://doi.org/10.1016/j.carbon.2017.05.041.

Bruno F. Machado, Philippe Serp. Graphene-based materials for catalysis.

Catal. Sci. Technol. 2012; 2: 54–75. doi:10.1039/C1CY00361E.

John R Miller, RA Outlaw, BC Holloway. Graphene double-layer capacitor with ac line-filtering performance. Science. 2010; 329(5999): 1637–1639. doi: 10.1126/science.1194372.

Binoy Bera. Synthesis, properties and applications of amorphous carbon nanotube and MoS2 nanosheets: a review. Nano Trends: A Journal of Nanotechnology and Its Applications. 2019; 21(1): 36–52.

Mehmet Copuroglu, Pinar Aydogan, Emre O Polat, Coskun Kocabas, Sefik Süzer. Gate-tunable photoemission from graphene transistors. Nano Lett. 2014: 14(5): 2837–2842. doi: 10.1021/nl500842y.

Yi Han, Zhen Xu, Chao Gao. Ultrathin graphene nanofiltration membrane for water purification. Advanced functional materials. 2013; 23(29): 3693–3700. doi: 10.1002/adfm.201202601.

Gonçalo da Cunha Rodrigues, Pavel Zelenovskiy, Konstantin Romanyuk, Sergey Luchkin, Yakov Kopelevich, Andrei Kholkin. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates. Nat. Commun. 2015; 6: 7572. doi: 10.1038/ncomms8572 (2015).

RJ Smith, PJ King, M Lotya, C Wirtz, U Khan, S De, AO’Neill, GS Duesberg, JC Grunlan, G Moriarty, J Chen, J Wang, AI Minett, V Nicolosi, JN Coleman. Adv. Mater. 2011; 23: 3944–3948.

JN Coleman, M Lotya, A O’Neill, SD Bergin, PJ King, U Khan, K Young, A Gaucher, S De, RJ Smith, IV Shvets, SK Arora, G Stanton, HY Kim, K Lee, GT. Kim, GS Duesberg, T Hallam, JJ Boland, JJ Wang, JF Donegan, JC Grunlan, G Moriarty, A Shmeliov, RJ Nicholls, JM Perkins, EM Grieveson, K Theuwissen, DW McComb, PD Nellist, V Nicolosi. Science. 2011; 331: 568–571.

G Cunningham, M Lotya, CS Cucinotta, S Sanvito, SD Bergin, R Menzel, MSP Shaffer, JN Coleman. ACS Nano. 2012; 6(4): 3468–3480.

Gyeong Sook Bang, Kwan Woo Nam, Jong Yun Kim, Jongwoo Shin, Jang Wook Choi, Sung-Yool Choi. Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. ACS Appl. Mater. Interfaces. 2014; 6: 7084−7089. dx.doi.org/10.1021/

am4060222.

XH Zhang, C Wang, MQ Xue, BC Lin, X Ye, WN Lei. Hydrothermal synthesis and characterization of ultrathin MoS2 nanosheets. Chalcogenide Letters. 2016; 13(1): 27–34.

Tianhua Sun, Zhangpeng Li, Xiaohong Liu, Limin Ma, Jinqing Wang, Shengrong Yang. Facile construction of 3D graphene/MoS2 composites as advanced electrode materials for supercapacitors. Journal of Power Sources. 2016; 331: 180–188. http://dx.doi.org/10.1016/

j.jpowsour.2016.09.036

Lina Wang, Ying Ma, Min Yang, Yanxing Qi. Titanium plate supported MoS2 nanosheet arrays for supercapacitor application. Applied Surface Science. 2016; 396: 1466–1471. http://dx.doi.org/10.1016/j.apsusc.2016.11.193.

S Balendhran, JZ Ou, M Bhaskaran, S Sriram, S Ippolito, Z Vasic, E Kats, S Bhargava, S Zhuiykov, K Kalantar-zadeh. Atomically thin layers of MoS2 via a two step thermal evaporation – exfoliation method. Nanoscale. 2012; 4: 461–466.

YH Lee, XQ Zhang, W Zhang, MT Chang, CT Lin, KD Chang, YC Yu, JT Wang, CS Chang, LJ Li, TW Lin. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012; 24(17): 2320–2325.

X Ling, YH Lee, Y Lin, W Fang, L Yu, MS Dresselhaus, J Kong. Role of the seedling promoter in MoS2 growth by chemical vapour deposition. Nano Lett. 2014; 14(2): 464–472.

Q Ji, Y Zhang, T Gao, Y Zhang, D Ma, M Liu, Y Chen, X Qiao, PH Tan, M Kan, J Feng, Q Sun, Z Liu. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 2013; 13(8): 3870–3877.

J Zhang, H Yu, W Chen, X Tian, D Liu, M Cheng, G Xie, W Yang, R Yang, X Bai, D Shi, G Zhang. Scalable growth of high-quality polycrystalline MoS(2) monolayers on SiO(2) with tunable grain size. ACS Nano. 2014; 8(6): 6024–6030.

YC Lin, W Zhang, JK Huang, KK Liu, YH Lee, CT Liang, CW Chu, LJ Li. Water-scale MoS2 thin layers prepared by MoO3 sulfurization Nanoscale. 2012; 4(20): 6637–6641.

D Qiu, DU Lee, SW Pak, EK Kim. Structural and optical properties of MoS2 layers grown by successive two-step chemical vapor deposition method. Thin Solid Films. 2015; 587: 47–51.

Hong Li, Qing Zhang, Chin Chong Ray Yap, Beng Kang Tay, Teo Hang Tong Edwin, Aurelien Olivier, Dominique Baillargeat. From bulk to monolayer MoS 2: evolution of Raman scattering. Adv. Funct. Mater. 2012; 22(7): 1385–1390. doi: 10.1002/adfm.201102111.

KS Novoselov, AK Geim, SV Morozov, D Jiang, Y Zhang, SV Dubonos, IV Grigorieva, AA Firsov. Electric field effect in atomically thin carbon films. Science. 2004; 306(5696): 666–669.

Claudia Altavilla, Maria Sarno, Paolo Ciambelli. A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS2@oleylamine (MdMo, W). Chem. Mater. 2011; 23: 3879–3885. dx.doi.org/10.1021/cm200837g.

S Iijima. Helical microtubules of graphitic carbon. Nature. 1991; 354: 56–58.

G Eda, HE Unalan, N Rupesinghe, GAJ Amaratunga, M Chhowalla. Field emission from graphene based composite thin films. Appl. Phys. Lett. 2008; 93: 233502 (2008).

Y Liu, J Tang, X Chen, W Chen, G KH Pang, JH Xin. A wet-chemical route for the decoration of CNTs with silver nanoparticles. Carbon. 2006; 44(2): 381–383.

Z Zanolli, R Leghrib, A Felten, J Pireaux, E Llobet, J Charlier. Gas sensing with Au-decorated carbon nanotubes. Journal of American Chemical Society. 2011; 6(5): 4592–4599.

T Zhao, et al. Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci. Rep. 2014; 4(5619). doi:10.1038/srep05619

DJ Guo, HL Li. Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon. 2005; 43(6): 1259–1264.

B Bera. Literature review on electrospinning process (a fascinating fiber fabrication technique). Imperial Journal of Interdisciplinary Research (IJIR). 2016; 2(8): 972–984.

B Bera, Madhumita Das Sarkar. Piezoelectricity in PVDF and PVDF based piezoelectric nanogenerator: a concept. IOSR Journal of Applied Physics (IOSR-JAP). 2017; 9(3): 95–99.

Binoy Bera, Dipankar Mandal, Madhumita Das Sarkar. Sensor made of PVDF/graphene electrospinning fiber and comparison between electrospinning PVDF fiber and PVDF/graphene fiber. Imperial Journal of Interdisciplinary Research (IJIR). 2016; 2(5): 1411–1413.

Binoy Bera, Madhumita Das Sarkar. Gold nanoparticle doped PVDF nanofiber preparation of concurrently harvesting light and mechanical energy. IOSR Journal of Applied Physics (IOSR-JAP). 2017; 9(3): 5–12.

Binoy Bera, Madhumita Das Sarkar. PVDF based piezoelectric nanogenerator as a new kind of device for generating power from renewable resources. IOSR Journal of Polymer and Textile Engineering (IOSR-JPTE). 2017; 4(2): 1–5.

Binoy Bera. Preparation of polymer nanofiber and its application. Asian journal of physical and chemical sciences. (AJOPACS). 2017; 2(4): 1–4.

Binoy Bera. Literature review on triboelectric nanogenerator. Imperial Journal of Interdisciplinary Research (IJIR). 2016; 2(10): 1263–1271·

Binoy Bera. Preparation of MoS2 nanosheets and PVDF nanofiber. Asian journal of physical and chemical sciences (AJOPACS). 2017; 2(4): 1–9.

Binoy Bera. Nanoporous silicon prepared by vapour phase strain etch and sacrificial technique. IJCA Proceedings on International Conference on Microelectronic Circuit and System MICRO 2015. (1):42–45, 2015, December.

Binoy Bera, Dipankar Mandal, Madhumita Das Sarkar. Porous silicon and its nanoparticle as biomaterial: a review. Imperial Journal of Interdisciplinary Research (IJIR). 2016; 2(11): 1414–1419.

Binoy Bera. A review on polymer, graphene and carbon nanotube: properties, synthesis and applications. Imperial Journal of Interdisciplinary Research (IJIR). 2017; 3(10): 61–70.

Hari Sarkar, Binoy Bera, Sudakshina Kundu. Sleep mode transistor sizing effect of MTCMOS inverter circuit on performance in deep submicron technology. Global Journal of Trends in Engineering (GJTE). 2015; 2(4): 131–134.

Binoy Bera, Madhumita Das Sarkar. Piezoelectric effect, piezotronics and piezophototronics: a review. Imperial Journal of Interdisciplinary Research (IJIR). 2016; 2(11):1407–1410.

Binoy Bera, Diptonil Banerjee. Preparation and characterization of amorphous carbon nanotube-MoS2 nanohybrid. International Journal of Research in Engineering, Science and Management. 2019; 2(8): 5–8.

John R Miller, RA Outlaw, BC Holloway. Graphene double-layer capacitor with ac line-filtering performance. Science. 2010: 329(5999): 1637–1639. doi: 10.1126/science.1194372.

Diana Berman, Ali Erdemir, Anirudha V Sumant. Graphene: a new emerging lubricant. Materials Today. 2014; 17(1): 31–42. https://doi.org/10.1016/

j.mattod.2013.12.003.

Mehmet Copuroglu, Pinar Aydogan, Emre O Polat, Coskun Kocabas, Sefik Süzer Gate-tunable photoemission from graphene transistors. Nano Lett. 2014; 14(5): 2837–2842. doi: 10.1021/nl500842y.

Hamid Ghorbani Shiraz, Omid Tavakoli. Investigation of graphene-based systems for hydrogen storage. Renewable and Sustainable Energy Reviews. 2017; 74: 104–109. https://doi.org/10.1016/j.rser.2017.02.052.

Yi Han, Zhen Xu, Chao Gao. Ultrathin graphene nanofiltration membrane for water purification. Advanced Functional Materials. 2013; 23(29): 3693–3700. doi: 10.1002/adfm.201202601.

Gonçalo da Cunha Rodrigues, Pavel Zelenovskiy, Konstantin Romanyuk, Sergey Luchkin, Yakov Kopelevich, Andrei Kholkin. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates. Nat. Commun. 2015; 6:7572. doi: 10.1038/ncomms8572

Guoxing Li, Yuliang Li, Huibiao Liu, Yanbing Guo, Yongjun Li, Daoben Zhu. Architecture of graphdiyne nanoscale films. Chemical Communications. 2010; 46(19): 3256–3258. doi: 10.1039/B922733D.

L Li, Y Yu, GJ Ye, Q Ge, X Ou, H Wu, D Feng, XH Chen, Y Zhang. Black phosphorus field-effect transistors. Nature Nanotechnology. 2014; 9(5): 372–377. doi: 10.1038/nnano.2014.35.

Harneet Ritu. Large area fabrication of semiconducting phosphorene by Langmuir-Blodgett assembly. Sci. Rep. 2016; 6: 34095. doi: 10.1038/srep34095

Binoy Bera, Diptonil Banerjee. A detail opto-electronic and photocatalytic study of amorphous carbon nanotubes—MoS2 hybrids. Nano Trends: A Journal of Nanotechnology and Its Applications. 2019; 21(2): 19–30.

Yi Lin, John W Connell. Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale. 2012; 4(22): 6908. doi: 10.1039/c2nr32201c.

Kin Fai Mak, Changgu Lee, James Hone, Jie Shan, Tony F Heinz. Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters. 105(13): 136805. doi: 10.1103/

physrevlett.105.136805


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Nano Trends-A Journal of Nano Technology & Its Applications