Open Access Open Access  Restricted Access Subscription or Fee Access

A smart fluids; Magneto rheological, ferrofluid, and nanofluids; a prospect for Medical and Technological application

Gizachew Diga

Abstract


The physiochemical and biomedical applications of smart fluids, typically ferrofluid, magnetorheologicalfluids, and nanofluids are studied. It is predicted that these fluids are impacted by the three most important rheology parameters, namely strain, magnetic field, and temperature. The magnetoresistive contribution is treated in terms of drug force in order to determine thecoefficient of viscosity. The research presents that the viscosity of studied fluids will increase in proportion to applied magnetic field. The variables accounting for the resulting coefficient of viscosity are fluid density, drag force,shear strain, and magnetic field. On the other hand, the action of controlled fields on bee honey, blood,yolk, and lava lake shows that they behave as magnetorheological fluids. By computing the coefficient of viscosity and strain, it is possible to determine the dispersion relation. This relation reveals that the angular frequency is a function of mass, electric charge, magnetic field, and position. From the crystal
dynamics, the dispersion relations for magnetorheological fluids/ferrofluids is determined and compared with dispersions relation of solids (phonons), plasma, and spin excitations (magnons). On the basis of the calculated dispersion relations, the biomedical and technological applications of smart fluids are predicted. This paper is aimed at investigating some of the new features and applications of these fluids in electromechanical systems, medicine, and nanotechnology.


Keywords


Dispersion relation, ferrofluid, Magnetorheological fluids, nanofluids, Smart fluids, Rheology, Viscosity

Full Text:

PDF

References


Ismail I, Mazlan SA, Zamzuri H, Olabi AG. Fluid-particle separation of magnetorheological fluid in squeeze mode. Jap J Appl Phys. 2012; 51 (6): 301–305. doi: 10.1143/JJAP.51.067301.

Phule PP. Magnetorheological (MR) fluids: principles and applications Smart Mater Bull. 2001; 2(2): 7–10. doi: 10.1016/S14713918(01)80040-X.

Vékás L. Ferrofluid and magnetorheological fluids. Adv Sci Technol. 2008; 54: 127–136. doi:10.4028/www.scientific.net/AST.54.127.

Lecomte JTJ. Hemoglobin: some (dis)assembly required. Biophys J. 2020; 118: 1235–1237. doi:10.1016/j.bpj.2019.12.041.

Caughey WS, Smythe GA, O'Keeffe DH, Maskasky JE, Smith MI. Heme A of cytochrome coxidase. Structure and properties: comparisons with hemes B, C, and S and derivatives. J BiolChem. 1975; 250 (19): 7602–7622.

Bayaniahangar R, Ahangar SB, Zhang Z, Lee BP, Pearce JM. 3-Dprinted magnetic soft magnetichelical coil actuators of iron oxide embedded polydimethylsiloxane. Sensors Actuators B Chem.2021; 326: 128781. doi: 10.1016/j.snb.2020.128781.

Dietterich HR, Grant GE, Fasth B, Major JJ, Cashman KV. Can lava flow like water? Assessing applications of critical flow theory to channelized basaltic lava flows. J Geophys Res Earth Surface.2022; 127: 1–26. doi: 10.1029/2022JF006666.

Scherer C, Figueiredo Neto AM. Ferrofluid: properties and applications. Brazil J Phys. 2005; 35(3A): 718–727. doi: 10.1590/S0103-97332005000400018.

Rajagopalan B, Hayagrivan M, Praveenkumar M. Ferrofluid actuated thermal overload relay. Smart Grid Renew Energy. 2012; 3: 62–66. doi: 10.4236/sgre.2012.31009.

Usman M, Amin S, Saeed A. Magnetohydrodynamic hybrid nanofluids flow with the effect of Darcy–Forchheimer theory and slip conditions over an exponential stretchable sheet. Adv MechEng. 2022; 14 (8). doi: 10.1177/16878132221116479.

Lone SA, Anwar S, Saeed A, Seangwattana T, Kumam P, Kumam W. A comparative analysis of the time-dependent magnetized blood-based nanofluids flow over a stretching cylinder. Heliyon.2023; 9 (4): e14537. doi: 10.1016/j.heliyon.2023.e14537.

Furlani EP. Magnetophoretic separation of blood cells at themicroscale. J Phys D Appl Phys. 2006;40: 1313–1319.

Shi D, Sun L, Mi G, Sheikh L, Bhattacharya S, Nayar S, Webster TJ. Controlling ferrofluid permeability across the blood–brain barrier model. Nanotechnology. 2014; 25 (7): 075101. doi:10.1088/0957-4484/25/7/075101.

Ayari A, Abbassi F, Hammami MA, Landoulsi A. Physicochemical and antimicrobial properties of Tunisian honeys: honey inhibited the motility of bacteria. Afr J Microbiol Res. 2013; 7 (32): 4138–4145. doi: 10.5897/AJMR12.2154.

Darvish H, Khoshtaghaza MH, Zarein M, Azadbakht M. Ohmic processing of liquid whole egg,white egg and yolk. Agric Eng Int CIGR J. 2012; 14 (4): 224–230.

Philip J. Magnetic nanofluids (ferrofluids): recent advances, applications, challenges, and futuredirections. Adv Colloids Interface Sci. 2023; 311: 102810. doi: 10.1016/j.cis.2022.102810.

Kamble VG, Kolekar S, Madivalar C. Preparation ofmagnetorheological fluids using different carriersand detailed study on their properties. Am J Nanotechnol. 2015; 6 (1): 7–15. doi: 10.3844/ajnsp.2015.7.15.

Kim DK, Voit W, Zapka W, Bjelke B, Muhammed M, Rao KV. Biomedical application offerrofluid containing magnetite nanoparticles. MRS Online Proc Lib. 2001; 676: Article 832. doi:10.1557/PROC-676-Y8.32.

Hong KS, Hong TK, Yang HS. Thermal conductivity of Fe nanofluids depending on the clustersize of nanoparticles. Appl Phys Lett.2006; 88: 031901. doi: 10.1063/1.2166199.

LotfizadehDehkordi B, Ghadimi A, Metselaar HSC. Box-Behnken experimental design for investigation of stability and thermal conductivity of TiO2 nanofluids. J Nanopart Res. 2013; 15:1369. doi: 10.1007/s11051-012-1369-4.

Wang X, Gordaninej F. Study of magnetorheological fluids at high shear rates. Rheol Acta 2006;45: 899–908. doi: 10.1007/s00397-005-0058-y.

Choi SB. Sedimentation stability of magnetorheological fluids: the state of the art and challenging issues. Micromachines (Basel). 2022; 13 (11): 1904. doi: 10.3390/mi13111904.

Taylor CA, Hughes TJR, Zarins CK. Finite element modeling of blood flow in arteries. Computer Methods Appl Mech Eng. 1998; 158: 155–196. doi: 10.1016/S0045-7825(98)80008-X.

Kittel C. Introduction to Solid State Physics. 8th edition. New York, NY, USA: John Wiley& Sons;2005.

Ashcroft NW, Mermin ND. Solid State Physics. New York, NY, USA: Holt-Saunders; 1976.

Arab Hassani F, Shi Q, Wen F, He T, Haroun A, Yang Y, et al. Smart materials for smart healthcare– moving from sensors and actuators to self-sustained nanoenergy nanosystems. Smart Mater Med.2020; 1: 92–124. doi: 10.1016/j.smaim.2020.07.005.

Socoliuc V, Avdeev MV, Kuncser V, Turcu R, Tombácz E, Vékás L. Ferrofluid and bio-ferrofluids:looking back and stepping forward. Nanoscale. 2022; 14 (13): 4786–4886. doi:10.1039/D1NR05841J.

Hadjivassiliou M, Croall ID, Zis P, Sarrigiannis PG, Sanders DS, Aeschlimann P, et al. Neurologic deficits in patients with newly diagnosed celiac disease are frequent and linked with autoimmunity to transglutaminase 6. Clin Gastroenterol Hepatol. 2019; 17 (13): 2678-2686.e2. doi:10.1016/j.cgh.2019.03.014.

Gu L, Liu Y, Zhang W, Li J, Chang C, Su Y, Yang Y. Novel extraction technologies and potential applications of egg yolk proteins. Food Sci Biotechnol. 2023; 32: 121–133. doi: 10.1007/s10068-022-01209-6.

Yilmaz B, ğa ündü D. Bioactivities of hen's egg yolk phosvitin and its functionalphosphopeptides in food industry and health. J Food Sci. 2020; 85 (10): 2969–2976. doi:10.1111/1750-3841.15447.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Nano Trends-A Journal of Nano Technology & Its Applications