Open Access Open Access  Restricted Access Subscription or Fee Access

An Overview of Rheumatoid Arthritis: Enhancing Current Treatment Strategies Using Nanomaterials

Shrestha Baruah

Abstract


Background and Aim: Rheumatoid arthritis (RA) is a persistent and progressive autoimmune disease commonly affecting many people worldwide that severely attacks joints, leading to inflammation, cartilage destruction, and bone erosion. Exhaustive research on RA over the years has significantly contributed to a better understanding of the disease's causes, mechanism, progression, and treatment. Several therapies are available for its management, including anti-inflammatory and disease-modifying antirheumatic drugs. This present review aims at providing an overview of RA, including conventional treatment methods and also explores the therapeutic application of phytochemicals in RA therapy and how nanomaterials could serve as a prominent formulation strategy to overcome the challenges associated with the same. Key findings: NSAIDs, GCs and DMARDs are the first commonly used drugs to be administered to a RA patient. While they help alleviate pain and inflammation, they do not decrease the rate of the underlying autoimmune process that causes joint damage in RA. Moreover, long-term usage results may result in adverse side effects. Therefore, phytoconstituents are considered a potential alternative due to their many benefits. However, despite the presence of significant merits, the use of these phytochemicals has several demerits, such as poor bioavailability as a function of low aqueous solubility and higher first-pass metabolism upon oral administration. On this account, due to their unique physical and chemical properties, nanomaterials can be opted to optimize the properties of phytoconstituents, such as bioavailability enhancement, higher stability and better efficacy for better treatment of RA. However, the question of safety, toxicity, and the absence of effective regulation provide significant challenges to researchers working on the practical uses of nano-drugs. Conclusion: Phytoconstituents possess immense potential in replacing conventional drugs for the treatment of RA, and its obstacles can be overcome using nanomaterial-based drug delivery technologies, which maximize the efficacy of these herbal antirheumatic drugs without any systemic adverse effects. Nevertheless, its impact remains limited despite the overwhelming understanding of the nano-drug delivery system. However, with extensive research, nanomaterials will eventually improve the healthcare system.

Full Text:

PDF

References


Ding, Q., Hu, W., Wang, R., Yang, Q., Zhu, M., Li, M., Cai, J., Rose, P., Mao, J., & Zhu, Y. Z. (2023). Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal transduction and targeted therapy, 8(1), 68. https://doi.org/10.1038/s41392-023-01331-9

Chauhan, K., Jandu, J. S., Brent, L. H., & Al-Dhahir, M. A. (2023). Rheumatoid Arthritis. In StatPearls. StatPearls Publishing.

Senthelal S, Li J, Ardeshirzadeh S, et al. Arthritis. [Updated 2022 Jun 19]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK518992/

Bullock, J., Rizvi, S. A. A., Saleh, A. M., Ahmed, S. S., Do, D. P., Ansari, R. A., & Ahmed, J. (2018). Rheumatoid Arthritis: A Brief Overview of the Treatment. Medical principles and practice : international journal of the Kuwait University, Health Science Centre, 27(6), 501–507. https://doi.org/10.1159/000493390

Littlejohn, E. A., & Monrad, S. U. (2018). Early Diagnosis and Treatment of Rheumatoid Arthritis. Primary care, 45(2), 237–255. https://doi.org/10.1016/j.pop.2018.02.010

Littlejohn, E. A., & Monrad, S. U. (2018). Early Diagnosis and Treatment of Rheumatoid Arthritis. Primary care, 45(2), 237–255. https://doi.org/10.1016/j.pop.2018.02.010

uo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J (2018) Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res 6(1):1–4. https://doi.org/10.1038/ s41413-018-0016-9.

Prasad, P., Verma, S., Surbhi, Ganguly, N. K., Chaturvedi, V., & Mittal, S. A. (2023). Rheumatoid arthritis: advances in treatment strategies. Molecular and cellular biochemistry, 478(1), 69–88. https://doi.org/10.1007/s11010-022-04492-3.

Lin, Y. J., Anzaghe, M., & Schülke, S. (2020). Update on the Pathomechanism, Diagnosis, and Treatment Options for Rheumatoid Arthritis. Cells, 9(4), 880. https://doi.org/10.3390/cells9040880.

Zhao J, Wei K, Jiang P, Chang C, Xu L, Xu L, Shi Y, Guo S and He D (2022) G-Protein-Coupled Receptors in Rheumatoid Arthritis: Recent Insights into Mechanisms and Functional Roles. Front. Immunol. 13:907733. doi: 10.3389/fimmu.2022.907733

Zhao J, Guo S, Schrodi SJ, He D. Molecular and Cellular Heterogeneity in Rheumatoid ArthritIs: MechanIsms and Clinical Implications. Front Immunol (2021) 12:790122. doi: 10.3389/fimmu.2021.790122

Abbasi, M., Mousavi, M. J., Jamalzehi, S., Alimohammadi, R., Bezvan, M. H., Mohammadi, H., & Aslani, S. (2019). Strategies toward rheumatoid arthritis therapy; the old and the new. Journal of cellular physiology, 234(7), 10018–10031. https://doi.org/10.1002/jcp.27860

Wadekar, J., Sawant, R.L., & Patel, U. (2016). Rheumatoid arthritis and herbal drugs: A review. The Journal of Phytopharmacology.

Guo, Q., Wang, Y., Xu, D., Nossent, J., Pavlos, N. J., & Xu, J. (2018). Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone research, 6, 15. https://doi.org/10.1038/s41413-018-0016-9

Kean, W. F., & Buchanan, W. W. (2005). The use of NSAIDs in rheumatic disorders 2005: a global perspective. Inflammopharmacology, 13(4), 343–370. https://doi.org/10.1163/156856005774415565

Jacqueline Bullocka Syed A.A. Rizvib Ayman M. Salehc Sultan S. Ahmedd Duc P. Doe Rais A. Ansarid Jasmin Ahmedf. (2018). Med Princ Pract. DOI: 10.1159/000493390

World Health Organization. Programme on Traditional Medicine. (‎2002)‎. WHO traditional medicine strategy 2002-2005. World Health Organization. https://apps.who.int/iris/handle/10665/67163

Venkatesha, Shivaprasad & Astry, Brian & Nanjundaiah, Siddaraju & Kim, Hong & Rajaiah, Rajesh & Yang, Yinghua & Tong, Li & Yu, Hua & Berman, Brian & Moudgil, Kamal. (2016). Control of autoimmune arthritis by herbal extracts and their bioactive components. Asian Journal of Pharmaceutical Sciences. 11. 10.1016/j.ajps.2016.02.003.

Bhattacharya, Sourav & Mandal, Sudip & Akhtar, & Dastider, Dipra & Sarkar, Sipra & Bose, Sankhadip & Bose, Anindya & Mandal, Sanjit & Kolay, Arindam & Dhrubo, Jyoti & Sen, Dr Dhrubo Jyoti & Kumar, Alok & Pan, Subham & Pramanick, Arghya & Meghnad, A & Sarani, Saha & Nagar, Bidhan. (2020). PHYTOCHEMICALS IN THE TREATMENT OF ARTHRITIS: CURRENT KNOWLEDGE. International Journal of Current Pharmaceutical Research. 12. 1-6. 10.22159/ijcpr.2020v12i4.39050.

Zheng, Miaomiao & Jia, Huiju & Wang, Huangwei & Liu, Linhong & He, Zhesheng & Zhang, Zhiyong & Yang, Wenzhi & Gao, Liang & Gao, Xueyun & Gao, Fuping. (2021). Application of nanomaterials in the treatment of rheumatoid arthritis. RSC Advances. 11. 7129-7137. 10.1039/D1RA00328C.

Rahman, M., Beg, S., Verma, A., Al Abbasi, F., Anwar, F., Saini, S., Akhter, S., & Kumar, V. (2017). Phytoconstituents as pharmacotherapeutics in rheumatoid arthritis: challenges and scope of nano/submicromedicine in its effective delivery. Journal of Pharmacy and Pharmacology, 69.

Singh, S., Singh, T. G., Mahajan, K., & Dhiman, S. (2020). Medicinal plants used against various inflammatory biomarkers for the management of rheumatoid arthritis. The Journal of pharmacy and pharmacology, 72(10), 1306–1327. https://doi.org/10.1111/jphp.13326

Cross, M., Smith, E., Hoy, D., Carmona, L., Wolfe, F., Vos, T., Williams, B., Gabriel, S., Lassere, M., Johns, N., Buchbinder, R., Woolf, A., & March, L. (2014). The global burden of rheumatoid arthritis: estimates from the global burden of disease 2010 study. Annals of the rheumatic diseases, 73(7), 1316–1322. https://doi.org/10.1136/annrheumdis-2013-204627

Köhler, B. M., Günther, J., Kaudewitz, D., & Lorenz, H. M. (2019). Current Therapeutic Options in the Treatment of Rheumatoid Arthritis. Journal of clinical medicine, 8(7), 938. https://doi.org/10.3390/jcm8070938

Gabriel, S. E., Crowson, C. S., Kremers, H. M., Doran, M. F., Turesson, C., O'Fallon, W. M., & Matteson, E. L. (2003). Survival in rheumatoid arthritis: a population-based analysis of trends over 40 years. Arthritis and rheumatism, 48(1), 54–58. https://doi.org/10.1002/art.10705

Crowson, C. S., Matteson, E. L., Myasoedova, E., Michet, C. J., Ernste, F. C., Warrington, K. J., Davis, J. M., 3rd, Hunder, G. G., Therneau, T. M., & Gabriel, S. E. (2011). The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases. Arthritis and rheumatism, 63(3), 633–639. https://doi.org/10.1002/art.30155

Rubtsov, A. V., Rubtsova, K., Kappler, J. W., & Marrack, P. (2010). Genetic and hormonal factors in female-biased autoimmunity. Autoimmunity reviews, 9(7), 494–498. https://doi.org/10.1016/j.autrev.2010.02.008

Littlejohn, E. A., & Monrad, S. U. (2018). Early Diagnosis and Treatment of Rheumatoid Arthritis. Primary care, 45(2), 237–255. https://doi.org/10.1016/j.pop.2018.02.010

Almutairi, K., Nossent, J., Preen, D., Keen, H., & Inderjeeth, C. (2021). The global prevalence of rheumatoid arthritis: a meta-analysis based on a systematic review. Rheumatology international, 41(5), 863–877. https://doi.org/10.1007/s00296-020-04731-0

Kolarz, K., Targońska-Stępniak, B., & Majdan, M. (2018). Wiadomosci lekarskie (Warsaw, Poland : 1960), 71(5), 1061–1065.

Figus, F. A., Piga, M., Azzolin, I., McConnell, R., & Iagnocco, A. (2021). Rheumatoid arthritis: Extra-articular manifestations and comorbidities. Autoimmunity reviews, 20(4), 102776. https://doi.org/10.1016/j.autrev.2021.102776

Coutant, F., & Miossec, P. (2020). Evolving concepts of the pathogenesis of rheumatoid arthritis with focus on the early and late stages. Current opinion in rheumatology, 32(1), 57–63. https://doi.org/10.1097/BOR.0000000000000664

Schaible H. G. (2014). Nociceptive neurons detect cytokines in arthritis. Arthritis research & therapy, 16(5), 470. https://doi.org/10.1186/s13075-014-0470-8

Conforti, A., Di Cola, I., Pavlych, V., Ruscitti, P., Berardicurti, O., Ursini, F., Giacomelli, R., & Cipriani, P. (2021). Beyond the joints, the extra-articular manifestations in rheumatoid arthritis. Autoimmunity reviews, 20(2), 102735. https://doi.org/10.1016/j.autrev.2020.102735

Sharif, K., Sharif, A., Jumah, F., Oskouian, R., & Tubbs, R. S. (2018). Rheumatoid arthritis in review: Clinical, anatomical, cellular and molecular points of view. Clinical anatomy (New York, N.Y.), 31(2), 216–223. https://doi.org/10.1002/ca.22980

Kapoor, T., & Bathon, J. (2018). Renal Manifestations of Rheumatoid Arthritis. Rheumatic diseases clinics of North America, 44(4), 571–584. https://doi.org/10.1016/j.rdc.2018.06.008

Wysocki, T., Olesińska, M., & Paradowska-Gorycka, A. (2020). Current Understanding of an Emerging Role of HLA-DRB1 Gene in Rheumatoid Arthritis-From Research to Clinical Practice. Cells, 9(5), 1127. https://doi.org/10.3390/cells9051127

Abbasifard, M., Imani, D., & Bagheri-Hosseinabadi, Z. (2020). PTPN22 gene polymorphism and susceptibility to rheumatoid arthritis (RA): Updated systematic review and meta-analysis. The journal of gene medicine, 22(9), e3204. https://doi.org/10.1002/jgm.3204

Perdigones, N., Vigo, A. G., Lamas, J. R., Martínez, A., Balsa, A., Pascual-Salcedo, D., de la Concha, E. G., Fernández-Gutiérrez, B., & Urcelay, E. (2010). Evidence of epistasis between TNFRSF14 and TNFRSF6B polymorphisms in patients with rheumatoid arthritis. Arthritis and rheumatism, 62(3), 705–710. https://doi.org/10.1002/art.27292

van der Helm-van Mil, A. H., Huizinga, T. W., Schreuder, G. M., Breedveld, F. C., de Vries, R. R., & Toes, R. E. (2005). An independent role of protective HLA class II alleles in rheumatoid arthritis severity and susceptibility. Arthritis and rheumatism, 52(9), 2637–2644. https://doi.org/10.1002/art.21272

Weyand, C. M., & Goronzy, J. J. (1999). HLA polymorphisms and T cells in rheumatoid arthritis. International reviews of immunology, 18(1-2), 37–59. https://doi.org/10.3109/08830189909043018

Wu, H., Liao, W., Li, Q., Long, H., Yin, H., Zhao, M., Chan, V., Lau, C. S., & Lu, Q. (2018). Pathogenic role of tissue-resident memory T cells in autoimmune diseases. Autoimmunity reviews, 17(9), 906–911. https://doi.org/10.1016/j.autrev.2018.03.014

Weyand, C. M., Hicok, K. C., Conn, D. L., & Goronzy, J. J. (1992). The influence of HLA-DRB1 genes on disease severity in rheumatoid arthritis. Annals of internal medicine, 117(10), 801–806. https://doi.org/10.7326/0003-4819-117-10-801

Ishikawa, Y., & Terao, C. (2020). The Impact of Cigarette Smoking on Risk of Rheumatoid Arthritis: A Narrative Review. Cells, 9(2), 475. https://doi.org/10.3390/cells9020475

Ishikawa, Y., Ikari, K., Hashimoto, M., Ohmura, K., Tanaka, M., Ito, H., Taniguchi, A., Yamanaka, H., Mimori, T., & Terao, C. (2019). Shared epitope defines distinct associations of cigarette smoking with levels of anticitrullinated protein antibody and rheumatoid factor. Annals of the rheumatic diseases, 78(11), 1480–1487. https://doi.org/10.1136/annrheumdis-2019-215463

Turunen, S., Huhtakangas, J., Nousiainen, T., Valkealahti, M., Melkko, J., Risteli, J., & Lehenkari, P. (2016). Rheumatoid arthritis antigens homocitrulline and citrulline are generated by local myeloperoxidase and peptidyl arginine deiminases 2, 3 and 4 in rheumatoid nodule and synovial tissue. Arthritis research & therapy, 18(1), 239. https://doi.org/10.1186/s13075-016-1140-9

Philippou, E., & Nikiphorou, E. (2018). Are we really what we eat? Nutrition and its role in the onset of rheumatoid arthritis. Autoimmunity reviews, 17(11), 1074–1077. https://doi.org/10.1016/j.autrev.2018.05.009

Moroni, L., Farina, N., & Dagna, L. (2020). Obesity and its role in the management of rheumatoid and psoriatic arthritis. Clinical rheumatology, 39(4), 1039–1047. https://doi.org/10.1007/s10067-020-04963-2

Horta-Baas, G., Romero-Figueroa, M. D. S., Montiel-Jarquín, A. J., Pizano-Zárate, M. L., García-Mena, J., & Ramírez-Durán, N. (2017). Intestinal Dysbiosis and Rheumatoid Arthritis: A Link between Gut Microbiota and the Pathogenesis of Rheumatoid Arthritis. Journal of immunology research, 2017, 4835189. https://doi.org/10.1155/2017/4835189

Wells, P. M., Adebayo, A. S., Bowyer, R. C. E., Freidin, M. B., Finckh, A., Strowig, T., Lesker, T. R., Alpizar-Rodriguez, D., Gilbert, B., Kirkham, B., Cope, A. P., Steves, C. J., & Williams, F. M. K. (2020). Associations between gut microbiota and genetic risk for rheumatoid arthritis in the absence of disease: a cross-sectional study. The Lancet. Rheumatology, 2(7), e418–e427. https://doi.org/10.1016/S2665-9913(20)30064-3

Balandraud, N., & Roudier, J. (2018). Epstein-Barr virus and rheumatoid arthritis. Joint bone spine, 85(2), 165–170. https://doi.org/10.1016/j.jbspin.2017.04.011

Castro-Gutierrez, A., Young, K., & Bermas, B. L. (2021). Pregnancy and Management in Women with Rheumatoid Arthritis, Systemic Lupus Erythematosus, and Obstetric Antiphospholipid Syndrome. The Medical clinics of North America, 105(2), 341–353. https://doi.org/10.1016/j.mcna.2020.10.002

Pertsinidou, E., Manivel, V. A., Westerlind, H., Klareskog, L., Alfredsson, L., Mathsson-Alm, L., Hansson, M., Saevarsdottir, S., Askling, J., & Rönnelid, J. (2021). Rheumatoid arthritis autoantibodies and their association with age and sex. Clinical and experimental rheumatology, 39(4), 879–882. https://doi.org/10.55563/clinexprheumatol/4bcmdb

McInnes, I. B., & Schett, G. (2011). The pathogenesis of rheumatoid arthritis. The New England journal of medicine, 365(23), 2205–2219. https://doi.org/10.1056/NEJMra1004965

Smolen, J. S., Aletaha, D., & McInnes, I. B. (2016). Rheumatoid arthritis. Lancet (London, England), 388(10055), 2023–2038. https://doi.org/10.1016/S0140-6736(16)30173-8

Curran, A. M., Naik, P., Giles, J. T., & Darrah, E. (2020). PAD enzymes in rheumatoid arthritis: pathogenic effectors and autoimmune targets. Nature reviews. Rheumatology, 16(6), 301–315. https://doi.org/10.1038/s41584-020-0409-1

Aarvak, T., & Natvig, J. B. (2001). Cell-cell interactions in synovitis: antigen presenting cells and T cell interaction in rheumatoid arthritis. Arthritis research, 3(1), 13–17. https://doi.org/10.1186/ar135

Frauwirth, K. A., & Thompson, C. B. (2002). Activation and inhibition of lymphocytes by costimulation. The Journal of clinical investigation, 109(3), 295–299. https://doi.org/10.1172/JCI14941

Yu, H. C., & Lu, M. C. (2019). The roles of anti-citrullinated protein antibodies in the immunopathogenesis of rheumatoid arthritis. Ci ji yi xue za zhi = Tzu-chi medical journal, 31(1), 5–10. https://doi.org/10.4103/tcmj.tcmj_116_18

Guo, Q., Wang, Y., Xu, D., Nossent, J., Pavlos, N. J., & Xu, J. (2018). Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone research, 6, 15. https://doi.org/10.1038/s41413-018-0016-9

Holers, V. M., & Banda, N. K. (2018). Complement in the Initiation and Evolution of Rheumatoid Arthritis. Frontiers in immunology, 9, 1057. https://doi.org/10.3389/fimmu.2018.01057

Phull, A. R., Nasir, B., Haq, I. U., & Kim, S. J. (2018). Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis. Chemico-biological interactions, 281, 121–136. https://doi.org/10.1016/j.cbi.2017.12.024

Elshabrawy, H. A., Chen, Z., Volin, M. V., Ravella, S., Virupannavar, S., & Shahrara, S. (2015). The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis, 18(4), 433–448. https://doi.org/10.1007/s10456-015-9477-2

McInnes, I. B., & Schett, G. (2017). Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet (London, England), 389(10086), 2328–2337. https://doi.org/10.1016/S0140-6736(17)31472-1

Hannemann, N., Apparailly, F., & Courties, G. (2021). Synovial macrophages: from ordinary eaters to extraordinary multitaskers. Trends in immunology, 42(5), 368–371. https://doi.org/10.1016/j.it.2021.03.002

Itoh, Y. Metalloproteinases in rheumatoid arthritis: Potential therapeutic targets to improve current therapies. Prog. Mol. Biol. Transl. Sci. 2017, 148, 327–338.

Yap, H. Y., Tee, S. Z., Wong, M. M., Chow, S. K., Peh, S. C., & Teow, S. Y. (2018). Pathogenic Role of Immune Cells in Rheumatoid Arthritis: Implications in Clinical Treatment and Biomarker Development. Cells, 7(10), 161. https://doi.org/10.3390/cells7100161

Yap, H. Y., Tee, S. Z., Wong, M. M., Chow, S. K., Peh, S. C., & Teow, S. Y. (2018). Pathogenic Role of Immune Cells in Rheumatoid Arthritis: Implications in Clinical Treatment and Biomarker Development. Cells, 7(10), 161. https://doi.org/10.3390/cells7100161

Crowley, T., O’Neil, J.D., Adams, H. et al. Priming in response to pro-inflammatory cytokines is a feature of adult synovial but not dermal fibroblasts. Arthritis Res Ther 19, 35 (2017). https://doi.org/10.1186/s13075-017-1248-6

Kato M. (2020). New insights into IFN-γ in rheumatoid arthritis: role in the era of JAK inhibitors. Immunological medicine, 43(2), 72–78. https://doi.org/10.1080/25785826.2020.1751908

Strand, V., Boklage, S.H., Kimura, T. et al. High levels of interleukin-6 in patients with rheumatoid arthritis are associated with greater improvements in health-related quality of life for sarilumab compared with adalimumab. Arthritis Res Ther 22, 250 (2020). https://doi.org/10.1186/s13075-020-02344-3

Robert, M., & Miossec, P. (2019). IL-17 in Rheumatoid Arthritis and Precision Medicine: From Synovitis Expression to Circulating Bioactive Levels. Frontiers in medicine, 5, 364. https://doi.org/10.3389/fmed.2018.00364

Paradowska-Gorycka, A., Grzybowska-Kowalczyk, A., Wojtecka-Lukasik, E., & Maslinski, S. (2010). IL-23 in the pathogenesis of rheumatoid arthritis. Scandinavian journal of immunology, 71(3), 134–145. https://doi.org/10.1111/j.1365-3083.2009.02361.x

McInnes, I. B., Buckley, C. D., & Isaacs, J. D. (2016). Cytokines in rheumatoid arthritis - shaping the immunological landscape. Nature reviews. Rheumatology, 12(1), 63–68. https://doi.org/10.1038/nrrheum.2015.171

Zhang X, Miao M, Zhang R, Liu X, Zhao X, Shao M, Liu T, Jin Y, Chen J, Liu H, Zhang X, Li Y, Zhou Y, Yang Y, Li R, Yao H, Liu Y, Li C, Li Y, Ren L, Su Y, Sun X, He J, Li Z. Efficacy and safety of low-dose interleukin-2 in combination with methotrexate in patients with active rheumatoid arthritis: a randomized, double-blind, placebo-controlled phase 2 trial. Signal Transduct Target Ther. 2022 Mar 7;7(1):67. doi: 10.1038/s41392-022-00887-2.

Del Grossi Moura, M., Cruz Lopes, L., Silva, M. T., Barberato-Filho, S., Motta, R. H. L., & Bergamaschi, C. C. (2018). Use of steroid and nonsteroidal anti-inflammatories in the treatment of rheumatoid arthritis: Systematic review protocol. Medicine, 97(41), e12658. https://doi.org/10.1097/MD.0000000000012658

Crofford L. J. (2013). Use of NSAIDs in treating patients with arthritis. Arthritis research & therapy, 15 Suppl 3(Suppl 3), S2. https://doi.org/10.1186/ar4174

Radu, A. F., & Bungau, S. G. (2021). Management of Rheumatoid Arthritis: An Overview. Cells, 10(11), 2857. https://doi.org/10.3390/cells10112857

Bullock, J., Rizvi, S. A. A., Saleh, A. M., Ahmed, S. S., Do, D. P., Ansari, R. A., & Ahmed, J. (2018). Rheumatoid Arthritis: A Brief Overview of the Treatment. Medical principles and practice : international journal of the Kuwait University, Health Science Centre, 27(6), 501–507. https://doi.org/10.1159/000493390

Hua, C., Buttgereit, F., & Combe, B. (2020). Glucocorticoids in rheumatoid arthritis: current status and future studies. RMD open, 6(1), e000536. https://doi.org/10.1136/rmdopen-2017-000536

Luís, M., Freitas, J., Costa, F., Buttgereit, F., Boers, M., JAP, D. S., & Santiago, T. (2019). An updated review of glucocorticoid-related adverse events in patients with rheumatoid arthritis. Expert opinion on drug safety, 18(7), 581-590.

Qorban, G., Badghaish, M., Albaqami, A., Nemer, A., Alali, A., Al Yaqoub, R., Alshamrani, H., Badahman, O., Ansaif, R., Alasmari, M., Alghamdi, A., Alshareef, H., Aljadeed, A., Almohammed, A., Filmban, D., Alaql, A. (2018). Rheumatoid Arthritis, Pathophysiology and Management. The Egyptian Journal of Hospital Medicine, 70(11), 1898-1903.

Fauzi, Abeer & Kadhim, Mohanad & Hameed, Imad. (2017). Rheumatoid Arthritis: History, Stages, Epidemiology, Pathogenesis, Diagnosis and Treatment. INTERNATIONAL JOURNAL OF TOXICOLOGICAL AND PHARMACOLOGICAL RESEARCH. 9. 10.25258/ijtpr.v9i02.9052. DOI:10.25258/ijtpr.v9i02.9052

Friedman B, Cronstein B (2019) Methotrexate mechanism in treatment of rheumatoid arthritis. Jt Bone Spine 86(3):301–307. https://doi.org/10.1016/j.jbspin.2018.07.004

Hamed, K. M., Dighriri, I. M., Baomar, A. F., Alharthy, B. T., Alenazi, F. E., Alali, G. H., Alenazy, R. H., Alhumaidi, N. T., Alhulayfi, D. H., Alotaibi, Y. B., Alhumaidan, S. S., Alhaddad, Z. A., Humadi, A. A., Alzahrani, S. A., & Alobaid, R. H. (2022). Overview of Methotrexate Toxicity: A Comprehensive Literature Review. Cureus, 14(9), e29518. https://doi.org/10.7759/cureus.29518

Mazouyès, A., Clay, M., Bernard, A. C., Gaudin, P., & Baillet, A. (2017). Efficacy of triple association methotrexate, sulfasalazine and hydroxychloroquine in early treatment of rheumatoid arthritis with insufficient response to methotrexate: Meta-analysis of randomized controlled trials. Joint bone spine, 84(5), 563–570. https://doi.org/10.1016/j.jbspin.2016.10.010

Lee, C. K., Lee, E. Y., Chung, S. M., Mun, S. H., Yoo, B., & Moon, H. B. (2004). Effects of disease-modifying antirheumatic drugs and antiinflammatory cytokines on human osteoclastogenesis through interaction with receptor activator of nuclear factor kappaB, osteoprotegerin, and receptor activator of nuclear factor kappaB ligand. Arthritis and rheumatism, 50(12), 3831–3843. https://doi.org/10.1002/art.20637

Plosker, G. L., & Croom, K. F. (2005). Sulfasalazine: a review of its use in the management of rheumatoid arthritis. Drugs, 65, 1825-1849.

Rempenault, C., Combe, B., Barnetche, T., Gaujoux‐Viala, C., Lukas, C., Morel, J., & Hua, C. (2020). Clinical and structural efficacy of hydroxychloroquine in rheumatoid arthritis: a systematic review. Arthritis care & research, 72(1), 36-40.

Lane, J. C., Weaver, J., Kostka, K., Duarte-Salles, T., Abrahao, M. T. F., Alghoul, H., ... & Prieto-Alhambra, D. (2020). Risk of hydroxychloroquine alone and in combination with azithromycin in the treatment of rheumatoid arthritis: a multinational, retrospective study. The Lancet Rheumatology, 2(11), e698-e711.

Radner, H., & Aletaha, D. (2015). Anti-TNF in rheumatoid arthritis: an overview. Wiener medizinische Wochenschrift (1946), 165(1-2), 3–9. https://doi.org/10.1007/s10354-015-0344-y

Atiqi, S., Hooijberg, F., Loeff, F. C., Rispens, T., & Wolbink, G. J. (2020). Immunogenicity of TNF-Inhibitors. Frontiers in immunology, 11, 312. https://doi.org/10.3389/fimmu.2020.00312

Mitoma, H., Horiuchi, T., Tsukamoto, H., & Ueda, N. (2018). Molecular mechanisms of action of anti-TNF-α agents - Comparison among therapeutic TNF-α antagonists. Cytokine, 101, 56–63. https://doi.org/10.1016/j.cyto.2016.08.014

Pandolfi, Franco, Laura Franza, Valentina Carusi, Simona Altamura, Gloria Andriollo, and Eleonora Nucera. 2020. "Interleukin-6 in Rheumatoid Arthritis" International Journal of Molecular Sciences 21, no. 15: 5238. https://doi.org/10.3390/ijms21155238

Ramírez, J., & Cañete, J. D. (2018). Anakinra for the treatment of rheumatoid arthritis: a safety evaluation. Expert opinion on drug safety, 17(7), 727–732. https://doi.org/10.1080/14740338.2018.1486819

Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131.

Curtis, J. R., & Singh, J. A. (2011). Use of biologics in rheumatoid arthritis: current and emerging paradigms of care. Clinical therapeutics, 33(6), 679–707. https://doi.org/10.1016/j.clinthera.2011.05.044

Mackie, S.L., Vital, E.M., Ponchel, F. et al. Co-stimulatory blockade as therapy for rheumatoid arthritis. Curr Rheumatol Rep 7, 400–406 (2005). https://doi.org/10.1007/s11926-005-0029-4

Pombo-Suarez, M., & Gomez-Reino, J. J. (2019). Abatacept for the treatment of rheumatoid arthritis. Expert review of clinical immunology, 15(4), 319–326. https://doi.org/10.1080/1744666X.2019.1579642

Mok C. C. (2013). Rituximab for the treatment of rheumatoid arthritis: an update. Drug design, development and therapy, 8, 87–100. https://doi.org/10.2147/DDDT.S41645

Scher J. U. (2012). B-cell therapies for rheumatoid arthritis. Bulletin of the NYU hospital for joint diseases, 70(3), 200–203.

Fragoulis, G. E., McInnes, I. B., & Siebert, S. (2019). JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatology (Oxford, England), 58(Suppl 1), i43–i54. https://doi.org/10.1093/rheumatology/key276

Morinobu A. (2020). JAK inhibitors for the treatment of rheumatoid arthritis. Immunological medicine, 43(4), 148–155. https://doi.org/10.1080/25785826.2020.1770948

Malemud C. J. (2018). The role of the JAK/STAT signal pathway in rheumatoid arthritis. Therapeutic advances in musculoskeletal disease, 10(5-6), 117–127. https://doi.org/10.1177/1759720X18776224

Gaby A. R. (1999). Alternative treatments for rheumatoid arthritis. Alternative medicine review : a journal of clinical therapeutic, 4(6), 392–402.

Sharma, D., Chaubey, P., & Suvarna, V. (2021). Role of natural products in alleviation of rheumatoid arthritis-A review. Journal of food biochemistry, 45(4), e13673. https://doi.org/10.1111/jfbc.13673

Priyanka Pandey and Sugandha Tiwari. Therapeutic potential of Indian plants for the treatment of rheumatoid arthritis. J Pharmacogn Phytochem 2018;7(3):37-41.

Choudhary, M., Kumar, V., Malhotra, H., & Singh, S. (2015). Medicinal plants with potential anti-arthritic activity. Journal of intercultural ethnopharmacology, 4(2), 147–179. https://doi.org/10.5455/jice.20150313021918

Santiago, L.Â.M., Neto, R.N.M., Santos Ataíde, A.C. et al. Flavonoids, alkaloids and saponins: are these plant-derived compounds an alternative to the treatment of rheumatoid arthritis? A literature review. Clin Phytosci 7, 58 (2021). https://doi.org/10.1186/s40816-021-00291-3

Emim, J. A., Oliveira, A. B., & Lapa, A. J. (1994). Pharmacological evaluation of the anti-inflammatory activity of a citrus bioflavonoid, hesperidin, and the isoflavonoids, duartin and claussequinone, in rats and mice. The Journal of pharmacy and pharmacology, 46(2), 118–122. https://doi.org/10.1111/j.2042-7158.1994.tb03753.x

Trisha Sarkar. (2018). Role of hesperdin, luteolin and coumaric acid in arthritis management: A Review. International Journal of Physiology, Nutrition and Physical Education 2018; 3(2): 1183-1186.

Tejada, S., Pinya, S., Martorell, M., Capó, X., Tur, J. A., Pons, A., & Sureda, A. (2018). Potential Anti-inflammatory Effects of Hesperidin from the Genus Citrus. Current medicinal chemistry, 25(37), 4929–4945. https://doi.org/10.2174/0929867324666170718104412

Umar, S., Kumar, A., Sajad, M., Zargan, J., Ansari, M. M., Ahmad, S., Katiyar, C. K., & Khan, H. A. (2013). Hesperidin inhibits collagen-induced arthritis possibly through suppression of free radical load and reduction in neutrophil activation and infiltration. Rheumatology international, 33(3), 657–663. https://doi.org/10.1007/s00296-012-2430-4

Pinho-Ribeiro, F. A., Hohmann, M. S., Borghi, S. M., Zarpelon, A. C., Guazelli, C. F., Manchope, M. F., Casagrande, R., & Verri, W. A., Jr (2015). Protective effects of the flavonoid hesperidin methyl chalcone in inflammation and pain in mice: role of TRPV1, oxidative stress, cytokines and NF-κB. Chemico-biological interactions, 228, 88–99. https://doi.org/10.1016/j.cbi.2015.01.011

Wang, Y., Chen, S., Du, K., Liang, C., Wang, S., Owusu Boadi, E., Li, J., Pang, X., He, J., & Chang, Y. X. (2021). Traditional herbal medicine: Therapeutic potential in rheumatoid arthritis. Journal of ethnopharmacology, 279, 114368. https://doi.org/10.1016/j.jep.2021.114368

Haleagrahara, N., Miranda-Hernandez, S., Alim, M. A., Hayes, L., Bird, G., & Ketheesan, N. (2017). Therapeutic effect of quercetin in collagen-induced arthritis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 90, 38–46. https://doi.org/10.1016/j.biopha.2017.03.026

Yuan, K., Zhu, Q., Lu, Q., Jiang, H., Zhu, M., Li, X., Huang, G., & Xu, A. (2020). Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities. The Journal of nutritional biochemistry, 84, 108454. https://doi.org/10.1016/j.jnutbio.2020.108454

Piovezana Bossolani, G. D., Silva, B. T., Colombo Martins Perles, J. V., Lima, M. M., Vieira Frez, F. C., Garcia de Souza, S. R., Sehaber-Sierakowski, C. C., Bersani-Amado, C. A., & Zanoni, J. N. (2019). Rheumatoid arthritis induces enteric neurodegeneration and jejunal inflammation, and quercetin promotes neuroprotective and anti-inflammatory actions. Life sciences, 238, 116956. https://doi.org/10.1016/j.lfs.2019.116956

Ni, H., Xu, M., Xie, K., Fei, Y., Deng, H., He, Q., Wang, T., Liu, S., Zhu, J., Xu, L., & Yao, M. (2020). Liquiritin Alleviates Pain Through Inhibiting CXCL1/CXCR2 Signaling Pathway in Bone Cancer Pain Rat. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.00436

Zhai, K. F., Duan, H., Cui, C. Y., Cao, Y. Y., Si, J. L., Yang, H. J., Wang, Y. C., Cao, W. G., Gao, G. Z., & Wei, Z. J. (2019). Liquiritin from Glycyrrhiza uralensis Attenuating Rheumatoid Arthritis via Reducing Inflammation, Suppressing Angiogenesis, and Inhibiting MAPK Signaling Pathway. Journal of agricultural and food chemistry, 67(10), 2856–2864. https://doi.org/10.1021/acs.jafc.9b00185

Lee, C. J., Moon, S. J., Jeong, J. H., Lee, S., Lee, M. H., Yoo, S. M., Lee, H. S., Kang, H. C., Lee, J. Y., Lee, W. S., Lee, H. J., Kim, E. K., Jhun, J. Y., Cho, M. L., Min, J. K., & Cho, Y. Y. (2018). Kaempferol targeting on the fibroblast growth factor receptor 3-ribosomal S6 kinase 2 signaling axis prevents the development of rheumatoid arthritis. Cell death & disease, 9(3), 401. https://doi.org/10.1038/s41419-018-0433-0

Li, Y., Yang, B., Bai, J. Y., Xia, S., Mao, M., Li, X., Li, N., & Chen, L. (2019). The roles of synovial hyperplasia, angiogenesis and osteoclastogenesis in the protective effect of apigenin on collagen-induced arthritis. International immunopharmacology, 73, 362–369. https://doi.org/10.1016/j.intimp.2019.05.024

Liu, W., Zhang, Y., Zhu, W., Ma, C., Ruan, J., Long, H., & Wang, Y. (2018). Sinomenine Inhibits the Progression of Rheumatoid Arthritis by Regulating the Secretion of Inflammatory Cytokines and Monocyte/Macrophage Subsets. Frontiers in immunology, 9, 2228. https://doi.org/10.3389/fimmu.2018.02228

Feng, Z. T., Yang, T., Hou, X. Q., Wu, H. Y., Feng, J. T., Ou, B. J., Cai, S. J., Li, J., & Mei, Z. G. (2019). Sinomenine mitigates collagen-induced arthritis mice by inhibiting angiogenesis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 113, 108759. https://doi.org/10.1016/j.biopha.2019.108759

Liang, J., Chang, B., Huang, M., Huang, W., Ma, W., Liu, Y., Tai, W., Long, Y., & Lu, Y. (2018). Oxymatrine prevents synovial inflammation and migration via blocking NF-κB activation in rheumatoid fibroblast-like synoviocytes. International immunopharmacology, 55, 105–111. https://doi.org/10.1016/j.intimp.2017.12.006

Ma, A., Yang, Y., Wang, Q., Wang, Y., Wen, J., & Zhang, Y. (2017). Anti inflammatory effects of oxymatrine on rheumatoid arthritis in rats via regulating the imbalance between Treg and Th17 cells. Molecular medicine reports, 15(6), 3615–3622. https://doi.org/10.3892/mmr.2017.6484

Xiao, Y., Shi, M., Qiu, Q., Huang, M., Zeng, S., Zou, Y., Zhan, Z., Liang, L., Yang, X., & Xu, H. (2016). Piperlongumine Suppresses Dendritic Cell Maturation by Reducing Production of Reactive Oxygen Species and Has Therapeutic Potential for Rheumatoid Arthritis. Journal of immunology (Baltimore, Md. : 1950), 196(12), 4925–4934. https://doi.org/10.4049/jimmunol.1501281

Yang, C. M., Chen, Y. W., Chi, P. L., Lin, C. C., & Hsiao, L. D. (2017). Resveratrol inhibits BK-induced COX-2 transcription by suppressing acetylation of AP-1 and NF-κB in human rheumatoid arthritis synovial fibroblasts. Biochemical pharmacology, 132, 77–91. https://doi.org/10.1016/j.bcp.2017.03.003

Wang, G., Xie, X., Yuan, L., Qiu, J., Duan, W., Xu, B., & Chen, X. (2020). Resveratrol ameliorates rheumatoid arthritis via activation of SIRT1-Nrf2 signaling pathway. BioFactors (Oxford, England), 46(3), 441–453. https://doi.org/10.1002/biof.1599

Dai, Q., Zhou, D., Xu, L., & Song, X. (2018). Curcumin alleviates rheumatoid arthritis-induced inflammation and synovial hyperplasia by targeting mTOR pathway in rats. Drug design, development and therapy, 12, 4095–4105. https://doi.org/10.2147/DDDT.S175763

Wang, W., Sun, W., & Jin, L. (2017). Caffeic acid alleviates inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes by inhibiting phosphorylation of IκB kinase α/β and IκBα. International immunopharmacology, 48, 61–66. https://doi.org/10.1016/j.intimp.2017.04.025

Fan, D., Guo, Q., Shen, J., Zheng, K., Lu, C., Zhang, G., Lu, A., & He, X. (2018). The Effect of Triptolide in Rheumatoid Arthritis: From Basic Research towards Clinical Translation. International journal of molecular sciences, 19(2), 376. https://doi.org/10.3390/ijms19020376

Lee, F., Bae, K. H., Ng, S., Yamashita, A., & Kurisawa, M. (2021). Hyaluronic acid-green tea catechin conjugates as a potential therapeutic agent for rheumatoid arthritis. RSC advances, 11(24), 14285–14294. https://doi.org/10.1039/d1ra01491a

Süntar, Ipek (2020). Phytonutrients in Food || Potential risks of phytonutrients associated with high-dose or long-term use. , (), 137–155. doi:10.1016/B978-0-12-815354-3.00010-1

Ekor M. (2014). The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in pharmacology, 4, 177. https://doi.org/10.3389/fphar.2013.00177

Zhou, J., Ouedraogo, M., Qu, F., & Duez, P. (2013). Potential genotoxicity of traditional chinese medicinal plants and phytochemicals: an overview. Phytotherapy research : PTR, 27(12), 1745–1755. https://doi.org/10.1002/ptr.4942

Hami Z. A Brief Review on Advantages of Nano-based Drug Delivery Systems. 2021. Ann Mil Heath Sci Res.19(1):e112274. doi 10.5812/amh.112274.

Danhier, F., Feron, O., & Préat, V. (2010). To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of controlled release : official journal of the Controlled Release Society, 148(2), 135–146. https://doi.org/10.1016/j.jconrel.2010.08.027

Joshi, M., Pathak, K., & Dhaneshwar, S. (2022). Nanotechnology-based strategies for effective delivery of phytoconstituents for the management of rheumatoid arthritis. Pharmacological Research - Modern Chinese Medicine, 2, 100061. https://doi.org/10.1016/j.prmcm.2022.100061

Hosseinikhah, S. M., Barani, M., Rahdar, A., Madry, H., Arshad, R., Mohammadzadeh, V., & Cucchiarini, M. (2021). Nanomaterials for the Diagnosis and Treatment of Inflammatory Arthritis. International journal of molecular sciences, 22(6), 3092. https://doi.org/10.3390/ijms22063092

Zhang, L., Chang, J., Zhao, Y., Xu, H., Wang, T., Li, Q., Xing, L., Huang, J., Wang, Y., & Liang, Q. (2018). Fabrication of a triptolide-loaded and poly-γ-glutamic acid-based amphiphilic nanoparticle for the treatment of rheumatoid arthritis. International Journal of Nanomedicine, 13, 2051-2064. https://doi.org/10.2147/IJN.S151233

Zhang, L., Wang, T., Li, Q., Huang, J., Xu, H., Li, J., Wang, Y., & Liang, Q. (2016). Fabrication of novel vesicles of triptolide for antirheumatoid activity with reduced toxicity in vitro and in vivo. International journal of nanomedicine, 11, 2663–2673. https://doi.org/10.2147/IJN.S104593.

Jijie, R., Barras, A., Boukherroub, R., & Szunerits, S. (2017). Nanomaterials for transdermal drug delivery: beyond the state of the art of liposomal structures. Journal of Materials Chemistry B, 5(44), 8653-8675.

Fernandes, L. F., Bruch, G. E., Massensini, A. R., & Frézard, F. (2018). Recent Advances in the Therapeutic and Diagnostic Use of Liposomes and Carbon Nanomaterials in Ischemic Stroke. Frontiers in neuroscience, 12, 453. https://doi.org/10.3389/fnins.2018.00453

Joshi, M., Pathak, K., & Dhaneshwar, S. (2022). Nanotechnology-based strategies for effective delivery of phytoconstituents for the management of rheumatoid arthritis. Pharmacological Research - Modern Chinese Medicine, 2, 100061. https://doi.org/10.1016/j.prmcm.2022.100061

Chen, G., Hao, B., Ju, D., Liu, M., Zhao, H., Du, Z., & Xia, J. (2015). Pharmacokinetic and pharmacodynamic study of triptolide-loaded liposome hydrogel patch under microneedles on rats with collagen-induced arthritis. Acta pharmaceutica Sinica. B, 5(6), 569–576. https://doi.org/10.1016/j.apsb.2015.09.006

Souto, Eliana B., Amanda Cano, Carlos Martins-Gomes, Tiago E. Coutinho, Aleksandra Zielińska, and Amélia M. Silva. 2022. "Microemulsions and Nanoemulsions in Skin Drug Delivery" Bioengineering 9, no. 4: 158. https://doi.org/10.3390/bioengineering9040158

Zhou Y, Gui S, Wang J, Qian S, Pan E (2012) Therapeutic Effects of Sinomenine Microemulsion-Based Hydrogel on Adjuvant-Induced Arthritis in Rats. J Pharm Drug Deliv Res 1:3. doi:10.4172/2325-9604.1000110

Jaiswal, M., Dudhe, R., & Sharma, P. K. (2015). Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech, 5(2), 123–127. https://doi.org/10.1007/s13205-014-0214-0

Zheng, Z., Sun, Y., Liu, Z., Zhang, M., Li, C., & Cai, H. (2015). The effect of curcumin and its nanoformulation on adjuvant-induced arthritis in rats. Drug design, development and therapy, 9, 4931–4942. https://doi.org/10.2147/DDDT.S90147

Vaz, G., Clementino, A., Mitsou, E., Ferrari, E., Buttini, F., Sissa, C., Xenakis, A., Sonvico, F., & Dora, C. L. (2022). In Vitro Evaluation of Curcumin- and Quercetin-Loaded Nanoemulsions for Intranasal Administration: Effect of Surface Charge and Viscosity. Pharmaceutics, 14(1), 194. https://doi.org/10.3390/pharmaceutics14010194

Bose, A., Roy Burman, D., Sikdar, B., & Patra, P. (2021). Nanomicelles: Types, properties and applications in drug delivery. IET nanobiotechnology, 15(1), 19–27. https://doi.org/10.1049/nbt2.12018

Fan, Z., Li, J., Liu, J., Jiao, H., & Liu, B. (2018). Anti-Inflammation and Joint Lubrication Dual Effects of a Novel Hyaluronic Acid/Curcumin Nanomicelle Improve the Efficacy of Rheumatoid Arthritis Therapy. ACS applied materials & interfaces, 10(28), 23595–23604. https://doi.org/10.1021/acsami.8b06236

Venturini, C.D., Jäger, E., Oliveira, C.P., Bernardi, A., Battastini, A.M., Guterres, S.S., & Pohlmann, A.R. (2011). Formulation of lipid core nanocapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 375, 200-208.

Janakiraman, K., Krishnaswami, V., Rajendran, V., Natesan, S., & Kandasamy, R. (2018). Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights. Materials today. Communications, 17, 200–213. https://doi.org/10.1016/j.mtcomm.2018.09.011

Lingayat, V. J., Zarekar, N. S., & Shendge, R. S. (2017). Solid lipid nanoparticles: a review. Nanoscience and Nanotechnology Research, 4(2), 67-72.

Mukherjee, S., Ray, S., & Thakur, R. S. (2009). Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian journal of pharmaceutical sciences, 71(4), 349–358. https://doi.org/10.4103/0250-474X.57282

Jourghanian P, Ghaffari S, Ardjmand M, Haghighat S, Mohammadnejad M. Sustained release Curcumin loaded Solid Lipid Nanoparticles. Advanced Pharmaceutical Bulletin. 2016 Mar;6(1):17-21. DOI: 10.15171/apb.2016.004

Agrahari V, Agrahari V. Facilitating the translation of nanomedicines to a clinical product: challenges and opportunities. Drug Discov Today. 2018 May;23(5):974-991. doi: 10.1016/j.drudis.2018.01.047. Epub 2018 Jan 31. PMID: 29406263.

Wacker MG, Proykova A, Santos GML. Dealing with nanosafety around the globe-Regulation vs. innovation. Int J Pharm. 2016 Jul 25;509(1-2):95-106. doi: 10.1016/j.ijpharm.2016.05.015. Epub 2016 May 13. PMID: 27184102.

Grossman JH, Crist RM, Clogston JD. Early Development Challenges for Drug Products Containing Nanomaterials. AAPS J. 2017 Jan;19(1):92-102. doi: 10.1208/s12248-016-9980-4. Epub 2016 Sep 9. PMID: 27612680.

Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H. S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology, 16(1), 71. https://doi.org/10.1186/s12951-018-0392-8

Ventola C. L. (2017). Progress in Nanomedicine: Approved and Investigational Nanodrugs. P & T : a peer-reviewed journal for formulary management, 42(12), 742–755.

Tinkle, S., McNeil, S. E., Mühlebach, S., Bawa, R., Borchard, G., Barenholz, Y. C., Tamarkin, L., & Desai, N. (2014). Nanomedicines: addressing the scientific and regulatory gap. Annals of the New York Academy of Sciences, 1313, 35–56. https://doi.org/10.1111/nyas.12403

Jain KK. An Overview of Drug Delivery Systems. Methods in Molecular Biology (Clifton, N.J.). 2020 ;2059:1-54. DOI: 10.1007/978-1-4939-9798-5_1. PMID: 31435914.

Macedo, A. S., Castro, P. M., Roque, L., Thomé, N. G., Reis, C. P., Pintado, M. E., & Fonte, P. (2020). Novel and revisited approaches in nanoparticle systems for buccal drug delivery. Journal of controlled release : official journal of the Controlled Release Society, 320, 125–141. https://doi.org/10.1016/j.jconrel.2020.01.006

Bruschi, Marcos. (2015). Strategies to Modify the Drug Release from Pharmaceutical Systems.




DOI: https://doi.org/10.37591/nanotrends.v25i1.1419

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Nano Trends-A Journal of Nano Technology & Its Applications