Open Access Open Access  Restricted Access Subscription or Fee Access

A Review on Biomedical Application by Using Electrospinning

Gohel Smeetraj, Tejas Bhatt


Despite its extensive history and some underlying work in tissue engineering dating back over 30 years, electrospinning has not attracted widespread interest as a possible polymer; with applications in tissue and medicine conveyance only emerging in the last 5–10 years. Electrospinning's overall usefulness, versatility, and ability to generate strands with nanoscale widths have sparked increased interest. Similarly, the electrospinning technique allows for the creation of frameworks with micro- to nanoscale geography and high porosity, similar to the typical extracellular lattice (ECM). Electrospinning's applications in tissue and medicine delivery are nearly limitless. This study examines the most recent developments and state of the art in electrospinning and its applications in tissue engineering and medicine delivery.


Electrospinning, Nanotechnology, Tissue Engineering, Drug Delivery;

Full Text:



S. J, V. AR, F. OC, L. R, Nanotechnology in drug delivery and tissue engineering: from discovery to applications, Nano Lett. 10 (2010) 3223–3230.

L. Zhang, T.J. Webster, Nanotechnology and nanomaterials: Promises for improved tissue regeneration, Nano Today. 4 (2009) 66 80.

L.A. Smith, P.X. Ma, Nano-fibrous scaffolds for tissue engineering, Colloids Surfaces B Biointerfaces. 39 (2004) 125–131.

H. Niu, H. Zhou, H. Wang, Electrospinning: an advanced nanofiber production technology, Energy Harvest. Prop. Electrospun Nanofibers (2019).

J.W. D Annis, A Bornat, R O Edwards, A Higham, B Loveday, An elastomeric vascular prosthesis - PubMed, (1978). (accessed September 12, 2021).

A.C. Fisher, Long term in-vivo performance of an electrostaticallyn spun small bore arterial prosthesis: the contribution of mechanical compliance and anti-platelet therapy - PubMed, (1985). (accessed September 12, 2021).

Kurečič, M. and Smole, M.S., 2013. Electrospinning: Nanofibre Production Method. Tekstilec, 56(1).

G. AM, J. JA, van der W. JP, von R. AF, Fibroblast response to microtextured silicone surfaces: texture orientation into or out of the surface, J. Biomed. Mater. Res. 28 (1994) 647–653.

R. AF, S. CE, C. CE, L. KJ, K. TG, M. J, Surface roughness, porosity, and texture as modifiers of cellular adhesion, Tissue Eng. 2 (1996) 241–253.

F. RG, M. CJ, A. GA, G. SL, N. PF, Effects of synthetic micro- and nano-structured surfaces on cell behavior, Biomaterials. 20 (1999) 573–588.

L. X, M. PX, Polymeric scaffolds for bone tissue engineering, Ann. Biomed. Eng. 32 (2004) 477–486.

S. B, E. JH, Engineering structurally organized cartilage and bone tissues, Ann. Biomed. Eng. 32 (2004) 148–159.

H. W, Y. T, T. WE, M. Z, R. S, Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering, Tissue Eng. 11 (2005) 1574–1588.

N.K. Awad, H. Niu, U. Ali, Y.S. Morsi, T. Lin, Electrospun Fibrous Scaffolds for Small-Diameter Blood Vessels: A Review, Membranes (Basel). 8 (2018).

Z. J, Q. H, W. H, H. P, O. L, G. S, L. J, C. Y, Y. Y, K. D, Engineering of vascular grafts with genetically modified bone marrow mesenchymal stem cells on poly (propylene carbonate) graft, Artif. Organs. 30 (2006) 898–905.

H. Inoguchi, T. Tanaka, Y. Maehara, T. Matsuda, The effect of gradually graded shear stress on the morphological integrity of a huvec-seeded compliant small-diameter vascular graft, Biomaterials. 3 (2007) 486–495

L. SJ, Y. JJ, L. GJ, A. A, S. J, In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application, J. Biomed. Mater. Res. A. 83 (2007) 999–1008.

X. CY, I. R, K. M, R. S, Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering, Biomaterials. 25 (2004) 877–886. 9612(03)00593-3.

S. J, L. J, L. SJ, K. M, B. J, S. S, L. G, V.D. M, C. R, Y. JJ, A. A, Controlled fabrication of a biological vascular substitute, Biomaterials. 27 (2006) 1088–1094.

I. H, K. IK, I. E, T. K, M. Y, M. T, Mechanical responses of a compliant electrospun poly(L-lactide-co-epsilon-caprolactone) small diameter vascular graft, Biomaterials. 27 (2006) 1470–1478.

B. C, C. B, Functional nanofibrous scaffolds for bone reconstruction, Colloids Surf. B. Biointerfaces. 56 (2007) 134–141.

C. W, L. X, Z. S, W. J, In situ growth of hydroxyapatite within electrospun poly(DL-lactide) fibers, J. Biomed. Mater. Res. A. 82 (2007) 831–841.

N. H, S. BW, F. YC, W. CH, Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery, Biotechnol. Bioeng. 99 (2008) 223–234.

M. Y, S. M, F.-S. M, G. A, H.-A. V, A. E, K. J, M. R, A. A, A. N, Nanofibrous poly(epsilon-caprolactone)/poly(vinyl alcohol)/chitosan hybrid scaffolds for bone tissue engineering using mesenchymal stem cells, Int. J. Artif. Organs. 30 (2007) 204–211.

G. Sui, X. Yang, F. Mei, X. Hu, G. Chen, X. Deng, S. Ryu, Poly-L lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration, J. Biomed. Mater. Res. Part A. 82A (2007) 445–454.

A. Anindyajati, P. Boughton, A.J. Ruys, Modelling and Optimization of Polycaprolactone Ultrafine-Fibres Electrospinning Process Using Response Surface Methodology, Materials (Basel). 11 (2018).

Y. F, M. R, W. S, R. S, Electrospinning of nano/micro scale poly(L lactic acid) aligned fibers and their potential in neural tissue engineering, Biomaterials. 26 (2005) 2603–2610.

S. E, K. K, B. S, B. G, K. D, D. P, M. J, Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend, Biomaterials. 28 (2007) 3012–3025.

S. S, O. H, G. JC, T. TE, T. SL, Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering, Tissue Eng. 12 (2006) 91–99.

L. CH, S. HJ, C. IH, K. YM, K. IA, P. KD, S. JW, Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast, Biomaterials. 26 (2005) 1261 1270.

N. H, W. CH, Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA, J. Control. Release. 120 (2007) 111–121.

O. HW, G. JC, T. A, T. SH, L. EH, Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon, Tissue Eng. 9 (2003) 431–439.

K. K, L. YK, C. C, F. D, H. BS, C. B, H. M, Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co glycolide)-based electrospun nanofibrous scaffolds, J. Control. Release. 98 (2004) 47–56.

H. ZM, H. CL, Y. A, Z. Y, H. XJ, Y. J, W. Q, Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning, J. Biomed. Mater. Res. A. 77 (2006) 169–179.

B. N, V. I, K. P, M. YZ, P. E, In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions, J. Biomed. Mater. Res. B. Appl. Biomater. 81 (2007) 530 543.

X. X, C. X, X. X, L. T, W. X, Y. L, J. X, BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells, J. Control. Release. 114 (2006) 307–316.


  • There are currently no refbacks.

Copyright (c) 2021 Nano Trends-A Journal of Nano Technology & Its Applications