Open Access Open Access  Restricted Access Subscription or Fee Access

HRTEM and Current-Voltage Study of ACNT-MoS2 Nanocomposite Prepared by Hydrothermal Method

Binoy Bera

Abstract


Recently amorphous carbon nanotube and their nanocomposites are most influenced research topic in the field of nanoscience and nanotechnology. Here in this paper, amorphous carbon nanotube-molybdenum disulfide nanocomposite has been prepared by hydrothermal method. Hexaammonium heptamolybdate tetrahydrate, thiourea and amorphous carbon nanotube were used as main material in that process. Amorphous carbon nanotube have been prepared separately by a low temperature chemical process. Finally the high resolution transmission electron microscope and current-voltage study of as prepared nanocomposite has been done.

 


Keywords


Amorphous carbon nanotube, MoS2, hydrothermal method, nanocomposites, high resolution transmission electron microscope.

Full Text:

PDF

References


S Iijima. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58.

G Eda, HE Unalan, N Rupesinghe, GAJ Amaratunga, M Chhowalla. Appl. Phys. Lett. 2008;93:233502.

Y Liu, J Tang, X Chen, W Chen, G KH Pang, JH Xin. A wet-chemical route for the decoration of CNTs with silver nanoparticles. Carbon. 2006;44(2):381–383..

Z Zanolli, R Leghrib, A Felten, J Pireaux, E Llobet, J Charlier. Gas sensing with Au-decorated carbon nanotubes. Journal of American Chemical Society. 2011;6(5):4592–4599.

T Zhao et al. Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes. Sci. Rep. 2014;4:5619. DOI:10.1038/srep05619.

DJ Guo and HL Li. Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon. 2005;43(6):1259–1264.

B Bera. Literature Review on Electrospinning Process (A Fascinating Fiber Fabrication Technique). Imperial Journal of Interdisciplinary Research (IJIR). 2016;2(8).

B Bera, Madhumita Das Sarkar. Piezoelectricity in PVDF and PVDF Based Piezoelectric Nanogenerator: A Concept . IOSR Journal of Applied Physics (IOSR-JAP). 2017;9(3):95–99.

Binoy Bera, Dipankar Mandal, Madhumita Das Sarkar. Sensor Made of PVDF/graphene Electrospinning Fiber and Comparison between Electrospinning PVDF Fiber and PVDF/graphene Fiber. Imperial Journal of Interdisciplinary Research. 2016;2(5).

Binoy Bera, Madhumita Das Sarkar. Gold Nanoparticle Doped PVDF Nanofiber Preparation of Concurrently Harvesting Light and Mechanical Energy. IOSR Journal of Applied Physics. May—June 2017;9(3):5–12.

Binoy Bera, Madhumita Das Sarkar. PVDF based Piezoelectric Nanogenerator as a new kind of device for generating power from renewable resources. IOSR Journal of Polymer and Textile Engineering (IOSR-JPTE). Mar.–Apr. 2017;4(2):1–5.

Binoy Bera. Preparation of polymer nanofiber and its application. Asian Journal of Physical and Chemical Sciences. 2017;2(4):1–4.

Binoy Bera. Literature Review on Triboelectric Nanogenerator. Imperial Journal of Interdisciplinary Research. January 2016;2(10):1263–1271.

Binoy Bera. Preparation of MoS2 nanosheets and PVDF nanofiber. Asian Journal of Physical and Chemical Sciences. 2017;2(4):1–9.

Binoy Bera. Nanoporous Silicon Prepared by Vapour Phase Strain Etch and Sacrificial Technique. IJCA Proceedings on International Conference on Microelectronic Circuit and System MICRO. December 2015;(1):42–45.

Binoy Bera, Dipankar Mandal, Madhumita Das Sarkar. Porous Silicon and its Nanoparticle as Biomaterial: A Review. Imperial Journal of Interdisciplinary Research. 2016;2(11):4.

Binoy Bera. A Review on Polymer, Graphene and Carbon Nanotube: Properties, Synthesis and Applications. Imperial Journal of Interdisciplinary Research. 2017;l-3(10).

Hari Sarkar, Binoy Bera, Sudakshina Kundu. Sleep Mode Transistor Sizing Effect of MTCMOS Inverter Circuit on Performance in Deep Submicron Technology. Global Journal of Trends in Engineering (GJTE). 2015;2(4).

Binoy Bera, Madhumita Das Sarkar. Piezoelectric Effect, Piezotronics and Piezophototronics: A Review. Imperial Journal of Interdisciplinary Research. 2016;2(11).

C Martin. Template synthesis of electronically conductive polymer nanostructures. Acc Chem Res. 1995;28 (2):61–68. doi:10.1021/ar00050a002.

DJ Guo and HL Li. Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon. 2005;43(6):1259–1264.

KH Tan and RJ Mohd. Surface structure and optical property of amorphous carbon nanotubes hybridized with cadmium selenide quantum dots. Journal of Nanoparticle Research. 2013;15(9).

TW Ebbesen, PM Ajayan. Nature. 1992;358:220.

A Thess, R Lee, P Nikolaev, HJ Dai, P Petit, J Robert, C Xu, YH Lee, SG Kim, , AG Rinzler, DT Colbert, GE Scuseria, D Tomanek, JE Fischer, RE Smalley. Science. 1996;273:483.

M Endo, K Takeuchi, S Igarashi, K Kobori, M Shiraishi, HW Kroto. J. Phys. Chem. Solids. 1993;54:1841.

Binoy Bera. Silicon Wafer Cleaning: A Fundamental and Critical Step in Semiconductor Fabrication Process. International Journal of Applied Nanotechnology. 2019;5 (1): 8–13.

Binoy Bera. Synthesis, Properties and Applications of Amorphous Carbon Nanotube and MoS2 Nanosheets: A Review. Nano Trends: A Journal of Nanotechnology and Its Applications. 2019;21(1):36–52.

Binoy Bera, Diptonil Banerjee. A Detail Opto-electronic and Photocatalytic Study of Amorphous Carbon Nanotubes—MoS2 Hybrids. Nano Trends: A Journal of Nanotechnology and Its Applications. 2019; 21(2): 19–30p.

Binoy Bera. Hydroxyapatite, Synthesis of numerous CdS quantum dot composite material: A Review. International Journal of Nanomaterials and Nanostructure. 2019;5(1):1–11.

Binoy Bera. Porous Silicon and its Nanoparticles: A Theoretical Study. International Journal of Applied Nanotechnology. 2019;5(1):14–18.

Binoy Bera. Synthesis and Applications of ACNT-MoS2 Nanocomposite. A Review. International Journal of Nanomaterials and Nanostructure. 2019;5(1):31–38.

Binoy Bera. Particle Size Measurement of Porous Silicon Particles: A Short Review. International Journal of Composite and Constituent Materials. 2019; 5(1): 8–11p.

Binoy Bera, Diptonil Banerjee. Preparation and Characterization of Amorphous Carbon Nanotube-MoS2 Nanohybrid. International Journal of Research in Engineering, Science and Management. August-2019;2(8):5–8.

A Castellanos-Gomez, N Agraït, G Rubio-Bollinger. Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett. 2010;96:213116.

H Li, G Lu, Z Yin, Q He, H Li, Q Zhang, H Zhang. Optical Identification of Single- and Few-Layer MoS2 Sheets. Small. 2012;8:682–686.

M Buscema, GA Steele, HSJ van der Zant A Castellanos-Gomez. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014;7:561–571.

K Liu, J Feng, A Kis, A Radenovic. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano. 2014;8:2504–2511. doi:10.1021/nn406102h.

J Brivio, DT Alexander, A Kis. Ripples and layers in ultrathin MoS2 membranes. Nano Lett. 2011;11:5148–5153. doi:10.1021/nl2022288.

SV Prabhakar Vattikuti, C Byon. Synthesis and characterization of molybdenum disulfide nanoflowers and nanosheets: Nanotribology. Journal of Nanomaterials. 2015; Article ID 710462, 1–11.

Y Tian, J Zhao, W Fu, Y Liu, Y Zhu, Z Wang. A facile route to synthesis of MoS2 nanorods. Materials Letters. 2005,59, 3452–3455.

Simone Bertolazzi, Jacopo Brivio, Andras Kis. Stretching and Breaking of Ultrathin MoS2. ACS Nano. 2011;5(12):9703–9709. doi:10.1021/nn203879f.

T Stephenson, Z Li, B Olsen, D Mitlin. Lithium Ion Battery Applications of Molybdenum Disulfide (MoS2) Nanocomposites. Energy Environ. Sci. 2014;7:209–31. doi:10.1039/C3EE42591F.

Peter Cannon. Melting Point and Sublimation of Molybdenum Disulphide. Nature. 1959;183(4675):1612–1613. doi:10.1038/1831612a0.

XH Zhang, C Wang, MQ Xue, BC Lin, X Ye, WN Lei. Hydrothermal synthesis and characterization of ultrathin MoS2 nanosheets. chalcogenide. Letters. January 2016;13(1):27–34.

Qinglin Zhang, Zhanwei Xu, Hejun Li, Liyan Wu, Gaoxiang Cao, Kezhi Li. Synthesis of MoS2 Nanosheets by Solid-State Reaction in CVD Furnace. Integrated Ferroelectrics. 2011;128(1). http://dx.doi.org/10.1080/10584587.2011.576612.

Claudia Altavilla, Maria Sarno, and Paolo Ciambelli. A Novel Wet Chemistry Approach for the Synthesis of Hybrid 2D Free-Floating Single or Multilayer Nanosheets of MS2@oleylamine (M=Mo, W). Chem. Mater. 2011;23:3879–3885. http://dx.doi.org/10.1021/cm200837g.

JM Tarascon, M Armand. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359–367.

AS Arico, P Bruce, B Scrosati, JM Tarascon, W van Schalkwijk. Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. 2005;4:366–377.

X Li, Y Feng, M Li, W Li, H Wei, D Song. Smart hybrids of Zn2GeO4 nanoparticles and ultrathin g-C3N4 layers: synergistic lithium storage and excellent electrochemical performance. Adv. Funct. Mater. 2015;25:6858–6866.

M Armand, JM Tarascon. Building better batteries. Nature. 2008;451:652–657.

B Kang, G Ceder Battery materials for ultrafast charging and discharging. Nature. 2009;458:190–193.

X Li, W Li, M Li, P Cui, D Chen, T Gengenbach, L Chu, H Liu, G Song. Glucose-assisted synthesis of the hierarchical TiO2 nanowire@MoS2nanosheet nanocomposite and its synergistic lithium storage performance. J. Mater. Chem. A 2015;3:2762–2769.

D Larcher, S Beattie, M Morcrette, K Edstrom, J-C Jumas, J-M Tarascon. Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries, J. Mater. Chem. 2007;17:3759–3772.

Y Feng, X Li, Z Shao, H Wang. Morphology-dependent performance of Zn2GeO4 as a high-performance anode material for rechargeable lithium ion batteries. J. Mater. Chem. A 2015;3:15274–15279.

L Chu, M Li, X Li, Y Wang, Z Wan, S Dou, D Song, Y Li, B Jiang. High performance NiO microsphere anode assembled from porous nanosheets for lithium-ion batteries, RSC Adv. 2015;5:49765–49770.

P Cui, B Xie, X Li, M Li, Y Li, Y Wang, Z Liu, X Liu, J Huang, D Song, JM Mbengue. Anatase/TiO2-B hybrid microspheres constructed from ultra-thin nanosheets: facile synthesis and application for fast lithium ion storage. Cryst Eng Comm. 2015;17:7930–7937.

T Stephenson, Z Li, B Olsen, D Mitlin. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energ. Environ. Sci. 2014;7:209–231.

H Hwang, H Kim, J Cho. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011;11:4826–4830.

R Dominko, D Arcon, A Mrzel, A Zorko, P Cevc, P Venturini, M Gaberscek, M Ramskar, D Mihailovic. Dichalcogenide nanotube electrodes for Li-ion batteries. Chem Inform. 2003;34:1531–1534.

H Li, W Li, L Ma, W Chen, J Wang. Electrochemical lithiation/delithiation performances of 3D flowerlike MoS2 powders prepared by ionic liquid assisted hydrothermal route. J. Alloy Compd. 2009;471:442–447.


Refbacks

  • There are currently no refbacks.