Open Access Open Access  Restricted Access Subscription or Fee Access

Theoretical Studies of Single Wall Carbon Nanotubes for Synthesis and Growth Mechanism

Pradeep Kumar Khiriya, Jyotsna Chauhan

Abstract


The term ‘controlled production’ of single-wall nanotubes SWNT implies the ability to control the selectivity towards SWNT by changing catalyst formulations and operating conditions, combined with a quantitative measurement of the SWNT obtained. In this contribution, a significant advancement towards the controlled production of SWNT is reported. A family of Fe-Ru catalysts has been found to be able to produce SWNT with high selectivity, depending on the -Ru ratio, the temperature of operation, and the processing time. The optimization of the catalyst was possible by the application of a simple and direct method of quantification of the SWNT production.

Keyword: Synthesis, CNT, SWNT, nanostructure


Full Text:

PDF

References


Iijima S. Helical microtubules of graphitic carbon. Nature International Journal of Science. 1991; 354: 56–58p.

Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature International Journal of Science, 1993; 363(6430): 603–605p.

Schützenberger P, Schützenberger L: Sur quelques faits relatifs à l’histoire du carbone. C. R. Acad. Sci. Paris 111. 1890; 774–778p.

Endo M, Kroto HW. Formation of carbon nanofibers. The Journal of Physical Chemistry. 1992; 96 (17): 6941–6944p.

Wagner RS. VLS mechanisms of crystal growth. Whisker Technology. 1970; 47– 72p.

Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE. Catalytic growth of single- walled nanotubes by laser vaporization. Chem. Phys. Lett. 1995; 243: 49–54p.

Lee YH, Kim SG, Tomanek D. Catalytic growth of single-wall carbon nanotubes: An ab initio study. Phys. Rev. Lett. 1997; 78: 2393–2396p.

Rodriguez NM, Chambers A, Baker RT. Catalytic engineering of carbon nanostructures. Langmuir. 1995; 11: 3862–3866p.

Delpeux S, Szostak K, Frackowiak E, Beguin F. An efficient two-step process for producing opened multi-walled carbon nanotubes of high purity Chem. Phys. Lett. 2005; 404: 374–378p.

Kuang MH, Wang ZL, Bai XD, Guo JD, Wang EG. Appl. Phys. Lett. 2000; 76: 1255–1257p

Hofmann S, Sharma R, Ducati C, Du G, Mattevi C, Cepek C, Cantoro M, Pisana S, Parvez A, Cervantes-Sodi F, Ferrari AC, Dunin-Borkowski R, Lizzit S, Petaccia L, Goldoni A, Robertson J. In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleationNano Lett. 2007; 7: 602–608p.

Puretzky A, Geohegan DB, Jesse S, Ivanov IN, Eres G. Appl. Phys. A: Mater. Sci. Process. 2005; 81: 223–240p.

Wang Y, Li B, Ho PS, Yao Z, Shi L. Effect of supporting layer on growth of carbon nanotubes by thermal chemical vapor deposition. Applied Physics Letters. 2006; 89 (18): 183113.

Huang S., Cai X, Liu J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. Journal of the American Chemical Society. 2003; 125 (19): 5636– 5637p.

Huang S, Maynor B, Cai X, Liu J. Ultralong, well‐aligned single‐walled carbon nanotube architectures on surfaces. Advanced Materials. 2003; 15 (19): 1651– 1655p.

Louchev OA, Laude T, Sato Y, Kanda H. Diffusion-controlled kinetics of carbon nanotube forest growth by chemical vapor deposition. The Journal of chemical physics. 2003; 118 (16): 7622–7634p.

Lin M, Ying Tan, JP, Boothroyd C, Loh, KP, Tok ES, Foo YL. Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano letters. 2006; 6 (3): 449–452p.

Dai H, Rinzler AG, Nikolaev P, Thess A, Colbert DT, Smalley RE. Chem. Phys. Lett. 1996; 260: 471–475p.

Rodriguez-Manzo JA, Terrones M, Terrones H, Kroto HW, Sun LT, Banhart F, Nat. Nanotechnol. 2007; 2: 307–311p.

Fan S, Liu L, Liu M. Monitoring the growth of carbon nanotubes by carbon isotope labelling. Nanotechnology. 2003; 14 (10): 1118.

Raty JY, Gygi F, Galli G. Growth of carbon nanotubes on metal nanoparticles: a microscopic mechanism from ab initio molecular dynamics simulations. Physical Review Letters. 2005; 95 (9): 096103.

Pope CJ, Marr JA, Howard JB. Chemistry of fullerenes C60 and C70 formation in flames. The Journal of Physical Chemistry. 1993; 97 (42): 11001–11013p.

Eres G, Kinkhabwala AA, Cui HT, Geohegan DB, Puretzky AA, Lowndes DH. J. Phys. Chem. B. 2005; 109: 16684– 16694p.

Cava La I, Bernardo CA, Trimm DL. Carbon. 1982; 20: 219–223p.

Xiaolin Li, Xiaomin Tu, Sasa Zaric, Kevin Welsher, Won Seok Seo, Wei Zhao, Hongjie Dai Published on Web 12/05/2007.


Refbacks

  • There are currently no refbacks.