Open Access Open Access  Restricted Access Subscription or Fee Access

Investigating the Effect of Annealing Temperatures on SnO2 Nano Structural Thin Films and their Properties

Md. Tareq Rahman, Z. Ahmed, Y. Ahmed, M. S. Rahman, F. T. Z. Toma

Abstract


As deposited and two different annealing temperatures (500°C and 600°C) of Tin dioxide (SnO2) thin films are prepared on glass substrates by Chemical Bath Deposition (CBD) technique and subsequently their structural, morphological, optical and electrical properties are investigated and analyzed as a function of annealing temperature. It’s found that SnO2 films exhibit different nanostructures at different annealing temperatures. XRD analysis confirms that both deposited and annealed films are cubic structure in nature. The crystalline size as well as the crystalline quality of the film are found to increase with the increase of annealing temperature to a certain point. Crystallite size from structural analysis are 25.47 nm, 27.57 nm, 34.05 nm and the grain size from morphological analysis are 60 nm, 85 nm 100 nm respectively. The result shows that with an increase in annealing temperature, the value of crystallite size and particle size are also increases so that there is a good agreement between XRD and SEM measurements. From UV-visible spectroscopy it is shown that transmittance of the SnO2 thin film decreasing with increasing the annealing temperature. As the annealing temperature increases band gap value decreases as 3.86 eV, 3.84 eV and 3.83 eV respectively. It is also confirmed that the conductivity is increasing with increasing the annealing temperature from electrical analysis. In this research work the CBD process is able to synthesize high quality crystallite thin films and the annealing temperature influences all the properties of the surface morphology, structural, optical and electrical properties of SnO2 thin films.


Keywords


Annealing Temperature, CBD, XRD, SEM, UV-visible spectroscopy

Full Text:

PDF

References


Wohlmuth W and Adesida I; Thin solid Films; 479; 223; (2005); https://doi.org/10.1016/j.tsf.2004.11.186.

Matsubara K, Fons P, Iwata K, Yamada A, Sakurai K, Tampo H and Niki S; Thin Solid Films; 431; 369; (2003); https://doi.org/10.1016/S0040-6090(03)00243-8.

Kikuchi N, Kusano E, Kishio E and Kingara A; Vacuum; 66; 365; (2002); https://doi.org/10.1016/S0042-207X(02)00156-2.

Man-Soo H, Lee H J, Jeong H S, Seo Y W and Kwon S J; Surf. Coat. Technol.; 29; 171; (2003); https://doi.org/10.1016/S0257-8972(03)00231-7.

Cao H, Qiu X, Liang Y, Zhang L, ZhaoMand Zhu Q; Chem. Phys. Chem.; 7; 4; (2006); https://doi.org/10.1002/cphc.20050045297.

He H Jr, Wu T H, Hsin C L, Li K M, Chen L J, Chueh Y L, Chou L J and Wang Z L; Small; 2; 116; (2006); https://doi.org/10.1002/smll.200500210.

Punit Patel, Ayyan Karmakar, Chetan Jariwala, Jayesh P Rupalarelia; Procedia Engineering, 51; 473-479; (2013); https://doi.org/10.1016/j.proeng.2013.01.067.

F. F. Liu, B. Shan, S. F. Zhang, and B. T. Tang, Langmuir 34(13); 3918–3924; (2018); https://doi.org/10.1021/acs.langmuir.7b04053.

L. B. Xiong, Y. X. Guo, J. Wen, H. R. Liu, G. Yang, P. L. Qin, and G. J. Fang, Adv. Funct. Mater.; 28(35); 1802757; (2018); https://doi.org/10.1002/adfm.201802757.

S. H. Wu, Y. T. Li, J. S. Luo, J. Lin, Y. Fan, Z. H. Gan, and X. Y. Liu, Opt. Express 22(4); 4731–4737; (2014); https://doi.org/10.1364/OE.22.004731.

H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, J. Jang, Adv. Mater. 30(10); 1704825; (2018); https://doi.org/10.1002/adma.201704825.

Q. Jiang, X. W. Zhang, and J. B. You, Small 14(31); 1801154; (2018); https://doi.org/10.1002/smll.201801154.

Aditia Rafai, Muhammad Iqbal, Nugraha, Brian Yuloarto, Aip Conference Proceedings, 231; 1415; (2011); https://doi.org/10.1063/1.3667263.

Shao- Ying, Po-Ju Chen, Hsiang-Chen Wang, Che-Hao Liao, Wen-Ming Chang, Ya-ping Hsieh; Journal of Nano materials; 2012; 7; (2012); https://doi.org/10.1155/2012/929278.

Chako S, Philip N S and Vaidyan V K; Phys. Stat. Sol. (a); 204; 3305; (2007); https://doi.org/10.1002/pssa.200622597.

Tewari S., Bhattacharjee A., Pramana J. Phys.; 76; 153–163; (2011); https://doi.org/10.1007/s12043-011-0021-7.

Kim K H and Chun J S; Thin Solid Films; 141; 28; (1986); https://doi.org/10.1016/0040-6090(86)90356-1.

G. R. A. Kumara, S. Kaneko, M. Okuya and K. Tennakone; Langmuir; 18; 10493; (2002) https://doi.org/10.1021/la020421p.

C. V. Ramana, R. J. Smith, and O. M. Hussain; phys. stat. sol. (a); 199; R4–R6; (2003); https://doi.org/10.1002/pssa.200309009.

Soumia Belhamri, Nasr-Eddine Hamdadou; Journal of Physics: Conference Series 12007; (2016); https://doi.org/10.1088/1742-6596/758/1/012007.

Tauc, J., R. Grigorovici and A. Vancu; Physica Status Solidi; 15; (1966); 627-637; (1966); https://doi.org/10.1002/pssb.19660150224.

Davis, E.A. and N.F. Mott; Philosophical Magazine; 22; 903; (1970); https://doi.org/10.1080/14786437008221061.

Mott, N. F. and E. A. Davis; Electronic processes in non-crystalline materials; 2nd ed.; Clarendon Press (Oxford and New York); (1979).

Brian D. Viezbicke, Shane Patel, Benjamin E. Davis, and Dunbar P. Birnie; Physica Status Solidi; B, 252;1700-1710; (2015); https://doi.org/10.1002/pssb.201552007.

A. A. Yadav E. U. Masumdara, A.V. Moholkarb, M. Neumann-Spallartc, K.Y. Rajpured, C.H. Bhosaled; Journal of Alloys and Compounds; 488; 350–35; (2009); https://doi.org/10.1016/j.jallcom.2009.08.130.

Saeideh Ebrahimiasl, Wan Md. Zin Wan Yunus, Anuar Kassim, and Zulkarnain Zainal MDPI; 11(10); 9207–9216; (2011); https://doi.org/10.3390/s111009207.

Wiktor Matysiak, Tomasz Tański, Weronika Smok & Oleg Polishchuk; Scientific Reports; 10; 14802; (2020); https://doi.org/10.1038/s41598-020-71383-2.

B. Sawickia, E. Tomaszewiczb, M. Piatkowskab, T. Grona, H. Dudaa and K. Górnya; Acta Physica Polonica; 129; 94; (2016); https://doi.org/10.12693/APhysPolA.129.A-94.


Refbacks

  • There are currently no refbacks.