Open Access Open Access  Restricted Access Subscription or Fee Access

The Zinc Oxide Nanoparticles Review on the Basis of Nanotechnology for Textile Industries

Smeetraj Gohel

Abstract


The approach of nanoscale materials and structure, usually ranging from 1–100 nanometers (nm), it’s an emerging area of nanotechnology and nanoscience. Synthesis of metal nanoparticles like catalysis, electronics, textiles, environmental protection, and biotechnology are the realm of constant research. during this unique circumstance, ZnO nanostructures are demonstrated to be a noticeable possibility for the uses of the textile business. Textile fabrics are, surely, utilized as a templet, which is acceptable maintaining the scale and surface dispersion of the as-synthesized nanoparticles during a uniform space. All things considered, nanoparticles are confined inside the fibril and micro-fibrils of the cotton fibers.


Keywords


Zinc oxide; Nanoparticles; Textile; UV effects; Antibacterial

Full Text:

PDF

References


J. Jancar, J.F. Douglas, F.W. Starr, S.K. Kumar, P. Cassagnau, A.J. Lesser, S.S. Sternstein, M.J. Buehler, Current issues in research on structure–property relationships in polymer nanocomposites, Polymer (Guildf). 51 (2010) 3321–3343. https://doi.org/10.1016/j.polymer.2010.04.074.

S. Chaturvedi, P.N. Dave, N.K. Shah, Applications of nano-catalyst in new era, J. Saudi Chem. Soc. 16 (2012) 307–325. https://doi.org/10.1016/j.jscs.2011.01.015.

Z.L. Wang, Functional Oxide Nanobelts: Materials, Properties and Potential Applications in Nanosystems and Biotechnology, Annu. Rev. Phys. Chem. 55 (2004) 159–196. https://doi.org/

1146/annurev.physchem.55.091602.094416.

M.M. AbdElhady, Preparation and Characterization of Chitosan/Zinc Oxide Nanoparticles for Imparting Antimicrobial and UV Protection to Cotton Fabric, Int. J. Carbohydr. Chem. 2012 (2012) 1–6. https://doi.org/10.1155/2012/840591.

M. Guo, P. Diao, S. Cai, Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions, J. Solid State Chem. 178 (2005) 1864–1873. https://doi.org/10.1

/j.jssc.2005.03.031.

No Title, (n.d.). http://nopr.niscair.res.in/handle/123456789/6078.

K. PATRA, Application of nanotechnology in textile engineering: An overview, J. Eng. Technol. Res. 5 (2013) 104–111. https://doi.org/10.5897/JETR

0309.

A.P.S. Sawhney, B. Condon, K.V. Singh, S.S. Pang, G. Li, D. Hui, Modern Applications of Nanotechnology in Textiles, Text. Res. J. 78 (2008) 731–739. https://doi.org/10.1177/0040517508091

M.R. Nurul Fazita, K. Jayaraman, D. Bhattacharyya, M.K. Mohamad Haafiz, C. Saurabh, M. Hussin, A. H.P.S., Green Composites Made of Bamboo Fabric and Poly (Lactic) Acid for Packaging Applications—A Review, Materials (Basel). 9 (2016) 435. https://doi.org/

3390/ma9060435.

M. Radetić, Functionalization of textile materials with TiO2 nanoparticles, J. Photochem. Photobiol. C Photochem. Rev. 16 (2013) 62–76. https://doi.org/10.1016/j.

jphotochemrev.2013.04.002.

S. Garcia-Segura, E. Brillas, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters, J. Photochem. Photobiol. C Photochem. Rev. 31 (2017) 1–35. https://doi.org/10.1016/

j.jphotochemrev.2017.01.005.

P.V. Gayathri, S. Yesodharan, E.P. Yesodharan, Microwave/Persulphate assisted ZnO mediated photocatalysis (MW/PS/UV/ZnO) as an efficient advanced oxidation process for the removal of RhB dye pollutant from water, J. Environ. Chem. Eng. 7 (2019) 103122. https://doi.org/10.1016/j.jece.2019.103122.

A. Khataee, R. Darvishi Cheshmeh Soltani, Y. Hanifehpour, M. Safarpour, H. Gholipour Ranjbar, S.W. Joo, Synthesis and Characterization of Dysprosium-Doped ZnO Nanoparticles for Photocatalysis of a Textile Dye under Visible Light Irradiation, Ind. Eng. Chem. Res. 53 (2014) 1924–1932. https://doi.

org/10.1021/ie402743u.

K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: A review, Water Res. 88 (2016) 428–448. https://doi.org/10.1016/j.

watres.2015.09.045.

A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO 2 based photocatalysts: a comparative overview, RSC Adv. 4 (2014) 37003–37026. https://

doi.org/10.1039/C4RA06658H.

A.M. El Saeed, M.A. El-Fattah, A.M. Azzam, Synthesis of ZnO nanoparticles and studying its influence on the antimicrobial, anticorrosion and mechanical behavior of polyurethane composite for surface coating, Dye. Pigment. 121 (2015) 282–289. https://

doi.org/10.1016/j.dyepig.2015.05.037.

S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, Antimicrobial activity of the metals and metal oxide nanoparticles, Mater. Sci. Eng. C. 44 (2014) 278–284. https://doi.

org/10.1016/j.msec.2014.08.031.

R. Dastjerdi, M. Montazer, A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties, Colloids Surfaces B Biointerfaces. 79 (2010) 5–18. https://

doi.org/10.1016/j.colsurfb.2010.03.029.

I. Perelshtein, G. Applerot, N. Perkas, E. Wehrschetz-Sigl, A. Hasmann, G.M. Guebitz, A. Gedanken, Antibacterial Properties of an In Situ Generated and Simultaneously Deposited Nanocrystalline ZnO on Fabrics, ACS Appl. Mater. Interfaces. 1 (2009) 361–366. https://doi.org/10.1021/am8000743.

M.A. Ansari, H.M. Khan, A.A. Khan, A. Sultan, A. Azam, Synthesis and characterization of the antibacterial potential of ZnO nanoparticles against extended-spectrum β-lactamases-producing Escherichia coli and Klebsiella pneumoniae isolated from a tertiary care hospital of North India, Appl. Microbiol. Biotechnol. 94 (2012) 467–477. https://

doi.org/10.1007/s00253–011–3733–1.

R. Dastjerdi, M. Montazer, S. Shahsavan, A new method to stabilize nanoparticles on textile surfaces, Colloids Surfaces A Physicochem. Eng. Asp. 345 (2009) 202–210. https://doi.org/10.1016/j.colsurfa.2009.05.007.

M. Amina, T. Amna, M.S. Hassan, T.A. Ibrahim, M.-S. Khil, Facile single mode electrospinning way for fabrication of natural product based silver decorated polyurethane nanofibrous membranes: Prospective medicated bandages, Colloids Surfaces A Physicochem. Eng. Asp. 425 (2013) 115–121. https://doi.org/10.1016/

j.colsurfa.2013.02.042.

Yuan Gao, R. Cranston, Recent Advances in Antimicrobial Treatments of Textiles, Text. Res. J. 78 (2008) 60–72. https://doi.org/10.1177/0040517507082332.

J. Liang, Y. Chen, X. Ren, R. Wu, K. Barnes, S.D. Worley, R.M. Broughton, U. Cho, H. Kocer, T.S. Huang, Fabric Treated with Antimicrobial N -Halamine Epoxides, Ind. Eng. Chem. Res. 46 (2007) 6425–6429. https://doi.org/10.1021/ie0

R. Singh, L. Sripada, R. Singh, Side effects of antibiotics during bacterial infection: Mitochondria, the main target in host cell, Mitochondrion. 16 (2014) 50–54. https://doi.org/10.1016/j.mito.2013.10.005.

R.Y. Pelgrift, A.J. Friedman, Nanotechnology as a therapeutic tool to combat microbial resistance, Adv. Drug Deliv. Rev. 65 (2013) 1803–1815. https://doi.org/10.1016/j.addr.2013.07.011.

N. Vigneshwaran, Modification of textile surfaces using nanoparticles, in: Surf. Modif. Text., Elsevier, 2009: pp. 164–184. https://doi.org/10.1533/9781845696689.164.

M. Joshi, A. Bhattacharyya, Nanotechnology: a new route to high-performance functional textiles, Text. Prog. 43 (2011) 155–233. https://doi.org/

1080/00405167.2011.570027.

I. Lacatusu, N. Badea, A. Murariu, D. Bojin, A. Meghea, Effect of UV Sunscreens Loaded in Solid Lipid Nanoparticles: A Combinated SPF Assay and Photostability, Mol. Cryst. Liq. Cryst. 523 (2010) 247/[819]-259/[831]. https://

doi.org/10.1080/15421401003719928.

T. Smijs, Pavel, Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness, Nanotechnol. Sci. Appl. (2011) 95. https://doi.org/10.2147/NSA.S19419.

A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism, Nano-Micro Lett. 7 (2015) 219–242. https://doi.org/10.1007/s40820–015–0040-x.

S. Bai, J. Hu, D. Li, R. Luo, A. Chen, C.C. Liu, Quantum-sized ZnO nanoparticles: Synthesis, characterization and sensing properties for NO2, J. Mater. Chem. 21 (2011) 12288. https://doi.org/10.1039/

c1jm11302j.

A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor, Reports Prog. Phys. 72 (2009) 126501. https://doi.org/10.1088/0034–4885/72/12/126501.

S. Ghayempour, M. Montazer, Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum /zinc oxide nanoparticles on cotton fabric, Ultrason. Sonochem. 34 (2017) 458–465. https://

doi.org/10.1016/j.ultsonch.2016.06.019.

A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc Oxide—From Synthesis to Application: A Review, Materials (Basel). 7 (2014) 2833–2881. https://doi.

org/10.3390/ma7042833.

V. Parihar, M. Raja, R. Paulose, A Brief Review of Structural, Electrical and Electrochemical Properties of Zinc Oxide Nanoparticles, Rev. Adv. Mater. Sci. 53 (2018) 119–130. https://doi.org/10.1515/

rams-2018–0009.

C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications, Renew. Sustain. Energy Rev. 81 (2018) 536–551. https://doi.org/

1016/j.rser.2017.08.020.

S.-W. Zhao, C.-R. Guo, Y.-Z. Hu, Y.-R. Guo, Q.-J. Pan, The preparation and antibacterial activity of cellulose/ZnO composite: a review, Open Chem. 16 (2018) 9–20. https://doi.org/10.1515/

chem-2018–0006.

B. Manikandan, T. Endo, S. Kaneko, K.R. Murali, R. John, Properties of sol gel synthesized ZnO nanoparticles, J. Mater. Sci. Mater. Electron. 29 (2018) 9474–9485. https://doi.org/10.1007/s10854–018–8981–8.

H. Mirzaei, M. Darroudi, Zinc oxide nanoparticles: Biological synthesis and biomedical applications, Ceram. Int. 43 (2017) 907–914. https://doi.org/10.1016/

j.ceramint.2016.10.051.

S. Ahmed, Annu, S.A. Chaudhry, S. Ikram, A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry, J. Photochem. Photobiol. B Biol. 166 (2017) 272–284. https://doi.org/

1016/j.jphotobiol.2016.12.011.

U.A. Maheswari, L. Prabu S., P. Chikody A, Biosynthesis of zinc oxide nanoparticle: a review on greener approach, MOJ Bioequivalence Bioavailab. 5 (2018). https://doi.org/10.15

/mojbb.2018.05.00096.

N. Al-Dhabi, M. Valan Arasu, Environmentally-Friendly Green Approach for the Production of Zinc Oxide Nanoparticles and Their Anti-Fungal, Ovicidal, and Larvicidal Properties, Nanomaterials. 8 (2018) 500. https://doi.org/10.3390/nano8070500.

A. Singh, N.B. Singh, S. Afzal, T. Singh, I. Hussain, Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants, J. Mater. Sci. 53 (2018) 185–201. https://doi.org/10.1007/s10853–017–1544–1.

C. Sushma, S. Girish Kumar, Advancements in the zinc oxide nanomaterials for efficient photocatalysis, Chem. Pap. 71 (2017) 2023–2042. https://

doi.org/10.1007/s11696–017–0217–5.

S.G. Kumar, K.S.R.K. Rao, Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications, RSC Adv. 5 (2015) 3306–3351. https://doi.org/10.10

/C4RA13299H.

R.T. Sapkal, S.S. Shinde, T.R. Waghmode, S.P. Govindwar, K.Y. Rajpure, C.H. Bhosale, Photo-corrosion inhibition and photoactivity enhancement with tailored zinc oxide thin films, J. Photochem. Photobiol. B Biol. 110 (2012) 15–21. https://doi.org/10.1016/j.

jphotobiol.2012.02.004.

J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, Oxygen Vacancy Induced Band-Gap Narrowing and Enhanced Visible Light Photocatalytic Activity of ZnO, ACS Appl. Mater. Interfaces. 4 (2012) 4024–4030. https://doi.org/10.1021/am300835p.

Y. Wang, R. Shi, J. Lin, Y. Zhu, Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4, Energy Environ. Sci. 4 (2011) 2922. https://doi.org/

1039/c0ee00825g.

H. Razavi-Khosroshahi, K. Edalati, J. Wu, Y. Nakashima, M. Arita, Y. Ikoma, M. Sadakiyo, Y. Inagaki, A. Staykov, M. Yamauchi, Z. Horita, M. Fuji, High-pressure zinc oxide phase as visible-light-active photocatalyst with narrow band gap, J. Mater. Chem. A. 5 (2017) 20298–20303. https://doi.org/10.1039/C7TA05

F.

M.M. Ba-Abbad, A.A.H. Kadhum, A. Bakar Mohamad, M.S. Takriff, K. Sopian, The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol–gel technique, J. Alloys Compd. 550 (2013) 63–70. https://doi.org/10.1016/

j.jallcom.2012.09.076.

A. Becheri, M. Dürr, P. Lo Nostro, P. Baglioni, Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers, J. Nanoparticle Res. 10 (2008) 679–689. https://doi.org/

1007/s11051–007–9318–3.

A. Verbič, M. Šala, M. Gorjanc, The influence of in situ synthesis parameters on the formation of ZnO nanoparticles and the UPF value of cotton fabric, Tekstilec. 61 (2018) 280–288. https://doi.org/

14502/Tekstilec2018.61.280–288.

Ü.Ö. Hadis Morkoç, Zinc Oxide: Fundamentals, Materials and Device Technology, n.d. https://www.wiley.com/

en-us/Zinc+Oxide%3A+Fundamentals%

C+Materials+and+Device+Technology-p-9783527408139.

Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications, J. Phys. Condens. Matter. 16 (2004) R829–R858. https://doi.org/10.1088/0953–8984/

/25/R01.

H. Upadhyaya, S. Shome, R. Sarma, S. Tewari, M.K. Bhattacharya, S.K. Panda, Green Synthesis, Characterization and Antibacterial Activity of ZnO Nanoparticles, Am. J. Plant Sci. 09 (2018) 1279–1291. https://doi.org/10.4236/ajps.2018.96094.

A. Mclaren, T. Valdes-Solis, G. Li, S.C. Tsang, Shape and Size Effects of ZnO Nanocrystals on Photocatalytic Activity, J. Am. Chem. Soc. 131 (2009) 12540–12541. https://doi.org/10.1021/ja9052703.

T.E.P. Alves, C. Kolodziej, C. Burda, A. Franco, Effect of particle shape and size on the morphology and optical properties of zinc oxide synthesized by the polyol method, Mater. Des. 146 (2018) 125–133. https://doi.org/10.1016/j.matdes.2018.03.013.

N. Saito, K. Watanabe, H. Haneda, I. Sakaguchi, K. Shimanoe, Highly Sensitive Ethanol Gas Sensor Using Pyramid-Shaped ZnO Particles with (0001) Basal Plane, J. Phys. Chem. C. 122 (2018) 7353–7360. https://doi.org/10.1021/acs.

jpcc.8b01936.

O. Carp, Alina Tirsoaga, B. Jurca, R. Ene, S. Somacescu, A. Ianculescu, Biopolymer starch mediated synthetic route of multi-spheres and donut ZnO structures, Carbohydr. Polym. 115 (2015) 285–293. https://doi.org/10.1016/j.carbpol.2014.08.061.

J. Liang, J. Liu, Q. Xie, S. Bai, W. Yu, Y. Qian, Hydrothermal Growth and Optical Properties of Doughnut-Shaped ZnO Microparticles, J. Phys. Chem. B. 109 (2005) 9463–9467. https://doi.org/10.

/jp050485j.

L.-C. Chao, S.-H. Yang, Growth and Auger electron spectroscopy characterization of donut-shaped ZnO nanostructures, Appl. Surf. Sci. 253 (2007) 7162–7165. https://doi.org/

1016/j.apsusc.2007.02.184.

T. Ghoshal, S. Kar, S. Chaudhuri, ZnO Doughnuts: Controlled Synthesis, Growth Mechanism, and Optical Properties, Cryst. Growth Des. 7 (2007) 136–141. https://doi.org/10.1021/cg060289h.

D. Zhao, Y. Zhou, Y. Deng, Y. Xiang, Y. Zhang, Z. Zhao, D. Zeng, A Novel and Reusable RGO/ZnO with Nanosheets/

Microparticle Composite Photocatalysts for Efficient Pollutants Degradation, Chemistry Select. 3 (2018) 8740–8747. https://doi.org/10.1002/slct.201801609.

A. Gupta, R. Srivastava, Zinc oxide nanoleaves: A scalable disperser-assisted sonochemical approach for synthesis and an antibacterial application, Ultrason. Sonochem. 41 (2018) 47–58. https://

doi.org/10.1016/j.ultsonch.2017.09.029.

W.L. Hughes, Z.L. Wang, Formation of Piezoelectric Single-Crystal Nanorings and Nanobows, J. Am. Chem. Soc. 126 (2004) 6703–6709. https://doi.org/10.

/ja049266m.

S. Navaladian, B. Viswanathan, Synthesis of Different Architectures Like Stars, Multipods, Ellipsoids and Spikes of Zinc Oxide by Surfactantless Precipitation, J. Nanosci. Nanotechnol. 11 (2011) 10219–10226. https://doi.org/10.1166/jnn.2011.

A. Verbič, M. Gorjanc, B. Simončič, Zinc Oxide for Functional Textile Coatings: Recent Advances, Coatings. 9 (2019) 550. https://doi.org/10.3390/coatings9090550.

M. Hasanpoor, M. Aliofkhazraei, H. Delavari, Microwave-assisted Synthesis of Zinc Oxide Nanoparticles, Procedia Mater. Sci. 11 (2015) 320–325. https://doi.

org/10.1016/j.mspro.2015.11.101.

V. Anand, V.C. Srivastava, Zinc oxide nanoparticles synthesis by electrochemical method: Optimization of parameters for maximization of productivity and characterization, J. Alloys Compd. 636 (2015) 288–292. https://doi.org/10.1016/j

.jallcom.2015.02.189.

A. Šarić, G. Štefanić, G. Dražić, M. Gotić, Solvothermal synthesis of zinc oxide microspheres, J. Alloys Compd. 652 (2015) 91–99. https://doi.org/

1016/j.jallcom.2015.08.200.

S. Ghosh, D. Majumder, A. Sen, S. Roy, Facile sonochemical synthesis of zinc oxide nanoflakes at room temperature, Mater. Lett. 130 (2014) 215–217. https://doi.org/10.1016/j.matlet.2014.05.

M. Laurenti, N. Garino, S. Porro, M. Fontana, C. Gerbaldi, Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries, J. Alloys Compd. 640 (2015) 321–326. https://doi.org/10.1016/j.jallcom.2015.0

222.

V.R. Kumar, P.R.S. Wariar, V.S. Prasad, J. Koshy, A novel approach for the synthesis of nanocrystalline zinc oxide powders by room temperature co-precipitation method, Mater. Lett. 65 (2011) 2059–2061. https://doi.org/

1016/j.matlet.2011.04.015.

S.K. Lim, S.-H. Hwang, S. Kim, H. Park, Preparation of ZnO nanorods by microemulsion synthesis and their application as a CO gas sensor, Sensors Actuators B Chem. 160 (2011) 94–98. https://doi.org/10.1016/j.snb.2011.07.018.

M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Optimization of process parameters using D-optimal design for synthesis of ZnO nanoparticles via sol–gel technique, J. Ind. Eng. Chem. 19 (2013) 99–105. https://doi.org/10.1016/j.jiec.2012.07.010.

P.K. Samanta, S. Mishra, Wet chemical growth and optical property of ZnO nanodiscs, Opt.—Int. J. Light Electron Opt. 124 (2013) 2871–2873. https://

doi.org/10.1016/j.ijleo.2012.08.066.

P. Ramamurthy, K. Chellamani, B. Dhurai, S. Than Karajan, B. Subramanian, E. Santhini, Antimicrobial Characteristics of Pulsed Laser Deposited Metal Oxides on Polypropylene Hydroentangled Nonwovens for Medical Textiles, Fibres Text. East. Eur. 25 (2017) 112–119. https://doi.org/10.5604/12303666.1228192.

A. Amani, M. Montazer, M. Mahmoudirad, Synthesis of applicable hydrogel corn silk/ZnO nanocomposites on polyester fabric with antimicrobial properties and low cytotoxicity, Int. J. Biol. Macromol. 123 (2019) 1079–1090. https://doi.org/10.1016/j.ijbiomac.2018.11.093.

A. Fouda, S. EL-Din Hassan, S.S. Salem, T.I. Shaheen, In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications, Microb. Pathog. 125 (2018) 252–261. https://doi.org/10.1016/j.micpath

.2018.09.030.

T.R. Kar, A.K. Samanta, M. Sajid, R. Kaware, UV protection and antimicrobial finish on cotton khadi fabric using a mixture of nanoparticles of zinc oxide and poly-hydroxy-amino methyl silicone, Text. Res. J. 89 (2019) 2260–2278. https://doi.org/10.1177/0040517518790973.

M. Salat, P. Petkova, J. Hoyo, I. Perelshtein, A. Gedanken, T. Tzanov, Durable antimicrobial cotton textiles coated sonochemically with ZnO nanoparticles embedded in an in-situ enzymatically generated bioadhesive, Carbohydr. Polym. 189 (2018) 198–203. https://doi.org/10.1016/j.carbpol.2018.02.033.

Y. Seki, Conductive Cotton Fabrics Coated with Myristic Acid/Zinc Oxide Nanoparticles, Polym. Plast. Technol. Eng. 57 (2018) 766–774. https://doi.org/

1080/03602559.2017.1344859.

M. Rastgoo, M. Montazer, T. Harifi, M. Mahmoudi Rad, Dual metal oxide loaded cotton/polyester fabric with photo, bio and magnetic properties, J. Ind. Text. 50 (2020) 170–186. https://doi.org/10.1177/

M. Fiedot-Toboła, M. Ciesielska, I. Maliszewska, O. Rac-Rumijowska, P. Suchorska-Woźniak, H. Teterycz, M. Bryjak, Deposition of Zinc Oxide on Different Polymer Textiles and Their Antibacterial Properties, Materials (Basel). 11 (2018) 707. https://doi.org/10.3390/ma11050707.

D. Gao, Y. Li, B. Lyu, L. Lyu, S. Chen, J. Ma, Construction of durable antibacterial and anti-mildew cotton fabric based on P(DMDAAC-AGE)/Ag/ZnO composites, Carbohydr. Polym. 204 (2019) 161–169. https://doi.org/10.1016/j.carbpol.2018.

087.

A.G. Hassabo, M.E. El-Naggar, A.L. Mohamed, A.A. Hebeish, Development of multifunctional modified cotton fabric with tri-component nanoparticles of silver, copper and zinc oxide, Carbohydr. Polym. 210 (2019) 144–156. https://doi.org/10.10

/j.carbpol.2019.01.066.

E. Fakoori, H. Karami, Preparation and characterization of ZnO-PP nanocomposite fibers and non-woven fabrics, J. Text. Inst. 109 (2018) 1152–1158. https://doi.org/10.1080/00405000.2017.1417681.

R. Borda d’ Água, R. Branquinho, M.P. Duarte, E. Maurício, A.L. Fernando, R. Martins, E. Fortunato, Efficient coverage of ZnO nanoparticles on cotton fibres for antibacterial finishing using a rapid and low cost in situ synthesis, New J. Chem. 42 (2018) 1052–1060. https://doi.org/10.1039/C7NJ03418K.

M.G. da Silva, M.A.S.D. de Barros, R.T.R. de Almeida, E.J. Pilau, E. Pinto, G. Soares, J.G. Santos, Cleaner production of antimicrobial and anti-UV cotton materials through dyeing with eucalyptus leaves extract, J. Clean. Prod. 199 (2018) 807–816. https://doi.org/10.1016/j.jclepro.2018.07.221.

G. Primc, B. Tomšič, A. Vesel, M. Mozetič, S.E. Ražić, M. Gorjanc, Biodegradability of oxygen-plasma treated cellulose textile functionalized with ZnO nanoparticles as antibacterial treatment, J. Phys. D. Appl. Phys. 49 (2016) 324002. https://doi.org/10.1088/0022–3727/49/32/

J. Pulit-Prociak, J. Chwastowski, A. Kucharski, M. Banach, Functionalization of textiles with silver and zinc oxide nanoparticles, Appl. Surf. Sci. 385 (2016) 543–553. https://doi.org/10.1016/j.apsusc.

05.167.

J. Ran, M. He, W. Li, D. Cheng, X. Wang, Growing ZnO Nanoparticles on Polydopamine-Templated Cotton Fabrics for Durable Antimicrobial Activity and UV Protection, Polymers (Basel). 10 (2018) 495. https://doi.org/10.3390/

polym10050495.

M. Fiedot, I. Maliszewska, O. Rac-Rumijowska, P. Suchorska-Woźniak, A. Lewińska, H. Teterycz, The Relationship between the Mechanism of Zinc Oxide Crystallization and Its Antimicrobial Properties for the Surface Modification of Surgical Meshes, Materials (Basel). 10 (2017) 353. https://doi.org/10.3390/ma

D.A.R. Souza, M. Gusatti, R.Z. Ternus, M.A. Fiori, H.G. Riella, In Situ Growth of ZnO Nanostructures on Cotton Fabric by Solochemical Process for Antibacterial Purposes, J. Nanomater. 2018 (2018) 1–9. https://doi.org/10.1155/2018/9082191.

S. Karthik, P. Siva, K.S. Balu, R. Suriyaprabha, V. Rajendran, M. Maaza, Acalypha indica mediated green synthesis of ZnO nanostructures under differential thermal treatment: Effect on textile coating, hydrophobicity, UV resistance, and antibacterial activity, Adv. Powder Technol. 28 (2017) 3184–3194. https://doi.org/10.1016/j.apt.2017.09.033.

A. Arputharaj, V. Nadanathangam, S.R. Shukla, A simple and efficient protocol to develop durable multifunctional property to cellulosic materials using in situ generated nano-ZnO, Cellulose. 24 (2017) 3399–3410. https://doi.org/10.1007/s

–017–1335–5.

L.J.R. Merina Paul Das, Evaluation of Antibacterial Efficacy of Biogenic Zinc Oxide Nanoparticles on Cotton Fabrics, Semant. Sch. (2017). https://www.

semanticscholar.org/paper/Evaluation-of-Antibacterial-Efficacy-of-Biogenic-on-Das-Rebecca/ad4ca73a6c857e3d9642

c55c1a9f2a8e361329f5.

A. Arputharaj, V. Prasad, S. Saxena, V. Nadanathangam, S.R. Shukla, Ionic liquid mediated application of nano zinc oxide on cotton fabric for multi-functional properties, J. Text. Inst. (2016) 1–9. https://doi.org/10.1080/00405000.2016.1222984.

A.A. Mohamed, A. Fouda, M.A. Abdel-Rahman, S.E.-D. Hassan, M.S. El-Gamal, S.S. Salem, T.I. Shaheen, Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles, Biocatal. Agric. Biotechnol. 19 (2019) 101103. https://doi.org/10.1016/j.bcab.2019.101103.

B.A. Holt, S.A. Gregory, T. Sulchek, S. Yee, M.D. Losego, Aqueous Zinc Compounds as Residual Antimicrobial Agents for Textiles, ACS Appl. Mater. Interfaces. 10 (2018) 7709–7716. https://doi.org/10.1021/acsami.7b15871.

F. Rezaei, L. Maleknia, P. Valipour, G. Chizari Fard, Improvement properties of nylon fabric by corona pre-treatment and nano coating, J. Text. Inst. 107 (2016) 1223–1231. https://doi.org/10.1080/004

2015.1100394.

K. Jazbec, M. Šala, M. Mozetič, A. Vesel, M. Gorjanc, Functionalization of Cellulose Fibres with Oxygen Plasma and ZnO Nanoparticles for Achieving UV Protective Properties, J. Nanomater. 2015 (2015) 1–9. https://doi.org/10.1155/

/346739.

I.M. El-Nahhal, A.A. Elmanama, N.M. El Ashgar, N. Amara, M. Selmane, M.M. Chehimi, Stabilization of nano-structured ZnO particles onto the surface of cotton fibers using different surfactants and their antimicrobial activity, Ultrason. Sonochem. 38 (2017) 478–487. https://

doi.org/10.1016/j.ultsonch.2017.03.050.

T.I. Shaheen, M.E. El-Naggar, A.M. Abdelgawad, A. Hebeish, Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics, Int. J. Biol. Macromol. 83 (2016) 426–432. https://doi.org/10.1016/

j.ijbiomac.2015.11.003.

M.E. El-Naggar, S. Shaarawy, A.A. Hebeish, Multifunctional properties of cotton fabrics coated with in situ synthesis of zinc oxide nanoparticles capped with date seed extract, Carbohydr. Polym. 181 (2018) 307–316. https://doi.

org/10.1016/j.carbpol.2017.10.074.

H. Křížová, V. Tuček, J. Neoralová, J. Wiener, Buffering and Antibacterial Properties of Cotton Canvas with Dolomite/ZnO-Styrene-Acrylic Complex Coating and their Comparison with Properties after the Accelerated Aging, TEKSTILEC. 60 (2017) 275–282. https://doi.org/10.14502/Tekstilec2017.60.275–282.

O.K. Alebeid, T. Zhao, Review on: developing UV protection for cotton fabric, J. Text. Inst. 108 (2017) 2027–2039. https://doi.org/10.1080/00405000.2017.1311201.

AS/NZS 4399:2017 Sun Protective Clothing–Evaluation and Classification, Australian/New Zealand Standard: Sydney, Australia/Wellington, New Zealand, 2017. https://shop.standards.

govt.nz/catalog/4399:2017%28AS%7CNZS%29/scope?

BS EN 13758–2:2003 Textiles. Solar UV Protective Properties. Classification and Marking of Apparel, in: European Standardization Committee: Brussels, Belgium, 2003. https://www.intertek.

com/uploadedFiles/Intertek/Divisions/Consumer_Goods/Media/PDFs/Sparkles/2012/sparkle630.pdf.

W. Wang, Y. Liang, Z. Yang, W. Zhang, S. Wang, Construction of ultraviolet protection, thermal insulation, superhydrophobic and aromatic textile with Al-doped ZnO–embedded lemon microcapsule coatings, Text. Res. J. 89 (2019) 3860–3870. https://doi.org/

1177/0040517518824842.

R. Pandimurugan, S. Thambidurai, UV protection and antibacterial properties of seaweed capped ZnO nanoparticles coated cotton fabrics, Int. J. Biol. Macromol. 105 (2017) 788–795. https://

doi.org/10.1016/j.ijbiomac.2017.07.097.

M.Z. Khan, V. Baheti, M. Ashraf, T. Hussain, A. Ali, A. Javid, A. Rehman, Development of UV Protective, Superhydrophobic and Antibacterial Textiles Using ZnO and TiO2 Nanoparticles, Fibers Polym. 19 (2018) 1647–1654. https://doi.org/10.100

/s12221–018–7935–3.

S.A. Noorian, N. Hemmatinejad, A. Bashari, One-Pot Synthesis of Cu 2 O/ZnO Nanoparticles at Present of Folic Acid to Improve UV-Protective Effect of Cotton Fabrics, Photochem. Photobiol. 91 (2015) 510–517. https://doi.org/

1111/php.12420.

D.K. Subbiah, G.K. Mani, K.J. Babu, A. Das, J.B. Balaguru Rayappan, Nanostructured ZnO on cotton fabrics: A novel flexible gas sensor & UV filter, J. Clean. Prod. 194 (2018) 372–382. https://doi.org/10.1016/j.

jclepro.2018.05.110.

I. Frydrych, A.J. Arul Pragasam, Effect of Weave Structures and Zinc Oxide Nanoparticles on the Ultraviolet Protection of Cotton Fabrics, Fibres Text. East. Eur. 26 (2018) 113–119. https://

doi.org/10.5604/01.3001.0010.7806.

J. Huang, Y. Yang, L. Yang, Y. Bu, T. Xia, S. Gu, H. Yang, D. Ye, W. Xu, Fabrication of multifunctional silk fabrics via one step in-situ synthesis of ZnO, Mater. Lett. 237 (2019) 149–151. https://doi.org/10.1016/j.matlet.2018.11.

M. Wang, M. Zhang, L. Pang, C. Yang, Y. Zhang, J. Hu, G. Wu, Fabrication of highly durable polysiloxane-zinc oxide (ZnO) coated polyethylene terephthalate (PET) fabric with improved ultraviolet resistance, hydrophobicity, and thermal resistance, J. Colloid Interface Sci. 537 (2019) 91–100. https://doi.org/10.1016/j.

jcis.2018.10.105.

M.N. Morshed, S. Al Azad, H. Deb, A. Islam, X. Shen, Eco-friendly UV Blocking Finishes Extracted from Amaranthus viridis and Solanum nigrum, TEKSTILEC. 61 (2018) 93–100. https://

doi.org/10.14502/Tekstilec2018.61.93–100.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Nano Trends-A Journal of Nano Technology & Its Applications