Open Access Open Access  Restricted Access Subscription or Fee Access

Green Synthesis of Zinc Oxide Nanoparticles using Extracts of Ocimum Tenuiflorum and its Characterization

K. Dilip Kumar, K. Narayana, K. Appa Rao

Abstract


Various applications of nanoparticles stimulate the need for synthesizing them. But, the conventional methods are usually hazardous and energy consuming. This leads to the focus on “green synthesis” of nanoparticles which was an efficient and eco-friendly approach. Natural diminishment operators are being investigated worldwide to limit the impacts of toxic chemicals utilized as a part of nanoparticles creation. The present study states a green approach for the synthesis of zinc oxide nanoparticles through a complex formation with plant extracts of ocimum tenuiflorum (Black Tulasi). Leaf extract was used as the biological reduction agent for synthesizing zinc oxide nanoparticles from zinc sulphate. The resultant nanopowder was characterized using various analytical techniques, such as X-ray diffraction, SEM, XRF, particle size analyser, the size range of nanoparticles obtained upon synthesis at optimum conditions was 50–63 nm as reported by TEM. X-beam diffraction examines affirmed the crystalline idea of the nanoparticles demonstrating molecule measure inside the range gave by electron microscopy information.

 

Keywords: Green synthesis, Ocimum tenuiflorum, zinc sulphate, SEM, TEM, XRF


Full Text:

PDF

References


Vidya C, Hiremath S, Chandraprabha MN, Antonyraj MAL, Gopala IV. A. Jain, et al., Green synthesis of ZnO nanoparticles by Calotropisgigantea. Int J CurrEng Technol. 2013; 1: 118–120p.

Aladpoosh, Montazer M. The role of cellulosic chains of cotton in biosynthesis of ZnO nanorods producing multifunctional properties: mechanism, characterizations and features. Carbohydr. Polym. 126 2015; 126: 122–129p. doi:10.1016/j.carbpol.2015.03.036.

Krupa AND, Vimala R. Evaluation of tetraethoxysilane (TEOS) sol-gel coatings, modified with green synthesized zinc oxide nanoparticles for combating micro fouling. Mater. Sci. Eng. C. 2016; 61: 728–735p. doi:10.1016/j.msec.2016.01.01

Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Ashokkumar S. Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015; 143: 158–164p. doi:10.1016/j.saa.2015 .02.011.

Afifi M, Almaghrabi OA, Kadasa NM. Ameliorative effect of zinc oxide nanoparticles on antioxidants and sperm characteristics in streptozotocin-induced diabetic rattestes. Biomed Res. Int. 2015. doi:10.1155/2015/153573.

Chen J, Liu X, Wang C, Yin SS, Li XL, Hu WJ et al. Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. J. Hazard. Mater. 2015; 297: 173–182p. doi:10.1016/j.jhazmat .2015.04.077.

Vitosh BML, Warncke DD, Lucas RE. Secondary and micronutrients of vegetables and field crops Secondary and Micronutrients. 1994.

Chandrasekaran R, Gnanasekar S, Seetharaman P, Keppanan R, Arockiaswamy W, Sivaperumal S. Formulation of Carica papaya latex-functionalized silver nanoparticles for its improved antibacterial and anticancer applications. J. Mol. Liq. 2016; 219; 232–238p. doi:10.1016/ j.molliq.2016.03.038.

Dhandapani P, Siddarth AS, Kamalasekaran S, Maruthamuthu S, Rajagopal G. Bio-approach: ureolytic bacteria mediated synthesis of ZnO nanocrystals on cotton fabric and evaluation of their antibacterial properties. Carbohydr. Polym. 2014; 103: 448–455p. doi:10.1016/j.carbpol .2013.12.074.

Mitra S, Patra P, Pradhan S, Debnath N, Dey KK, Sarkar S, et al. Microwave synthesis of ZnO@mSiO2 for detailed antifungal mode of action study: understanding the insights into oxidative stress. J. Colloid Interface Sci. 2015; 444: 97–108p. doi:10.1016/j.jcis.2014.12.041.

Yuvakkumar R, Suresh J, Saravanakumar BA Joseph Nathanael, SI Hong, V Rajendran, Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015; 137: 250–258p. doi:10.1016/j.saa.2014.08.022.

Kumari B, Sharma S, Singh N, Verma A, Satsangi VR, Dass S et al. ZnO thin films, surface embedded with biologically derived Ag/Au nanoparticles, for efficient photoelectrochemical splitting of water. Int. J. Hydrogen Energy. 2014; 39: 18216–18229p. doi:10.1016/j.ijhydene.20

.09.025.

Ambika S, Sundrarajan M. Green biosynthesis of ZnO nanoparticles using Vitex negundo L. extract: spectroscopic investigation of interaction between ZnO nanoparticles and human serum albumin. J. Photochem. Photobiol. B Biol. 2015; 149: 143–148p. doi:10.1016/j.jphotobiol.2

.05.004.

Kavithaa K, Paulpandi M, Ponraj T, Murugan K, Sumathi S. Induction of intrinsic apoptotic pathway in human breast cancer (MCF-7) cells through facile biosynthesized zinc oxide nanorods. Karbala Int. J. Mod. Sci. 2016; 2: 46–55p. http://dx.doi.org/10.1016/j.kijoms.2016.01.002.

Ravikumar S, Gokulakrishnan R, Boomi P. In vitro antibacterial activity of the metal oxide nanoparticles against urinary tract infections bacterial pathogens. Asian Pacific J. Trop. Dis. 2012; 2: 85–89p. doi:10.1016/ S2222-1808(12)60022-X.

Abdul H, Sivaraj R, Venckatesh R. Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. PurpurascensBenth.-lamiaceae leaf extract. Mater. Lett. 2014; 131: 16–18p. doi:10.1016/ j.matlet.2014.05.033.

Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong SI. Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nepheliumlappaceum L.) peel extract and its antibacterial applications. Mater. Sci. Eng. C. 2014; 41: 17–27p. doi:10.1016/j.msec.2014.04.025.

Zong Y, Li Z, Wang X, Ma J, Men Y. Synthesis and high photocatalytic activity of Eu-doped ZnO nanoparticles. Ceram. Int. 2014; 40: 10375–10382p. doi:10.1016/j.ceramint.2014.02.123.

Nachiyar V, Sunkar S, Prakash P. Biological synthesis of gold nanoparticles using endophytic fungi. Der Pharma Chem. 2015; 7: 31–38p.

Ramesh M, Anbuvannan M, Viruthagiri G. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015; 136: 864–870p. doi:10.1016/j.saa.2014.09.105.

Xiao L, Liu C, Chen X, Yang Z. Zinc oxide nanoparticles induce renal toxicity through reactive oxygen species. Food Chem. Toxicol. 2016; 90: 76–83p. doi:10.1016/j.fct.2016.02.002.

Rajeshkumar S. Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J. Genet. Eng. Biotechnol. 2016; 14: 195–202p. doi:10.1016/j.jgeb.2016.05.007.

Nagajyothi PC, Minh TN. Sreekanth TVM, Il Lee J, Joo DL, Lee KD. Green route biosynthesis: characterization and catalytic activity of ZnO nanoparticles. Mater. Lett. 2013; 108: 160–163p. doi:10.1016/j.matlet .2013.06.095.

Gnanajobitha G, Paulkumar K, Vanaja M, Rajeshkumar S, Malarkodi C, Annadurai G et al. Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. J Nanostruct Chem. 2013; doi:10.1186/2193-8865-3-67.

Anbuvannan M, Ramesh M, Viruthagiri G, Shanmugam N, Kannadasan N. Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015; 143: 304–308p. doi:10.1016/j.saa.2015 .01.124.

Sundrarajan M, Ambika S, Bharathi K. Plant-extract mediated synthesis of ZnO nanoparticles using Pongamiapinnata and their activity against pathogenic bacteria. Adv. Powder Technol. 2015; 26: 1294–1299, doi:10.1016/j.apt.2015.07.001.

Vanathi P, Rajiv P, Narendhran S, Rajeshwari S, Rahman PKSM. Biosynthesis and characterization of phyto mediated zinc oxide nanoparticles: a green chemistry approach. Mater. Lett. 2014; 134: 13–15p. doi:10.1016/j.matlet.2014.0

029.

Jamdagni P, Khatri P, Rana JS. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthesarbor-tristis and their antifungal activity. J. King Saud Univ. Sci. 2016. doi:10.1016/j.jksus.201

10.002.

Prasad K, Jha AK. ZnO nanoparticles: synthesis and adsorption study. Nat. Sci. 2009; 1: 129–135p. doi:10.4236/ns.2009.1

Patil BN, Taranath TN. Limoniaacidissima L. leaf mediated synthesis of zinc oxide nanoparticles: a potent tool against mycobacterium tuberculosis. Int. J. Mycobacteriology. 2016; 5: 197–204p. doi:10.1016/ j.ijmyco.2016.03.004.

Gunalan S, Sivaraj R, Rajendran V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog. Nat. Sci. Mater. Int. 2012; 22: 693–700, doi:10.1016/j.pnsc.2012.11.015.

Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A et al., Novel microbial route to synthesize ZnO nanoparticles using Aeromonashydrophila and their activity against pathogenic bacteria and fungi, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012; 90: 78–84, doi:10.1016/j.saa.2012.01.006.

Mirzaei H, Darroudi M. Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram. Int. 2017; 43: 907–914, doi:10.1016/j.ceramint.2016.

051.

Patel V, Berthold D, Puranik P, Gantar M. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol. Reports. 2015; 5: 112–119p. doi:10.1016/ j.btre.2014.12.001.

Stan M, Popa A, Toloman D, Dehelean A, I. Lung, G. Katona, Enhanced photocatalytic degradation properties of zinc oxide nanoparticles synthesized by using plant extracts. Mater. Sci. Semicond. Process. 2015; 39: 23–29p. doi:10.1016/j.mssp.2015.04.038.

Sherly ED, Vijaya JJ, Selvam NCS, Kennedy LJ. Microwave assisted combustion synthesis of coupled ZnO-ZrO2 nanoparticles and their role in the photocatalytic degradation of 2,4-dichlorophenol. Ceram. Int. 2014; 40: 5681–5691p. doi:10.1016/j.ceramint.2013.11.006.

Sangeetha G, Rajeshwari S, Venkatesh R. Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties. Mater. Res. Bull. 2011; 46: 2560–2566p. doi:10.1016/ j.materresbull.2011.07.046.

Elumalai K, Velmurugan S. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachtaindica. Appl. Surf. Sci. 2015; 345: 329–336p. doi:10.1016/ j.apsusc.2015.03.176.

Sheikhloo Z, Salouti M, Katiraee F. Biological synthesis of gold nanoparticles by Fungus Epicoccumnigrum. J. Clust. Sci. 2011; 22: 661–665p. doi:10.1007/s10876-011-0412-4.

Sangani MH, Moghaddam MN, Mahdi M. Inhibitory effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation. Nanomed. J. 2015; 2: 121–128p.

Hameed AS, Karthikeyan C, Ahamed AP, Thajuddin N, Alharbi NS, Alharbi SA, et al. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae. Sci. Rep. 2016; 6: 24312p. doi:10.1038/ srep24312.

Movahedi F, Masrouri H, Kassaee MZ. Immobilized silver on surface-modified ZnO nanoparticles: as an efficient catalyst for synthesis of propargylamines in water. J. Mol. Catal. A Chem. 2014; 345: 52–57p. doi:10.1016/j.molcata.2014.08.007.

Martínková L, Uhnáková B, Pátek M, Nešvera J, V. Kren, Biodegradation potential of the genus Rhodococcus. Environ. Int. 2009; 35: 162–177p. doi:10.1016/j.envint.2008.07.018.

Jain N, Bhargava A, Panwar J. Enhanced photocatalytic degradation of methylene blue using biologically synthesized “protein-capped” ZnO nanoparticles. Chem. Eng. J. 2014; 243: 549–555, doi:10.1016/j.cej.2013.11.085.

Ma H, Williams PL, Diamond SA. Ecotoxicity of manufactured ZnO nanoparticles – a review. Environ. Pollut. 2013; 172: 76–85p. doi:10.1016/j.envpol.2

08.011.

Vimala, S. Sundarraj, M. Paulpandi, S. Vengatesan, S. Kannan, Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochem. 2014; 49: 160–172p. doi:10.1016/j.procbio.2013.10.007.

Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC et al. Zinc oxide nanoparticles (ZnONPs) alleviate heavy metalinduced toxicity in Leucaenaleucocephala seedlings: a physiochemical analysis. Plant Physiol. Biochem. 2016; 110: 59–69p. doi:10.1016/j.plaphy.2016.08.022.

C. Hazra, D. Kundu, A. Chaudhari, J. Tushar, Biogenic synthesis, characterization, toxicity and photocatalysis of zinc sulfide nanoparticles using rhamnolipids from Pseudomonas aeruginosa BS01 as capping and stabilizing agent. J. Chem. Technol. Biotechnol. 2013. doi:10.1002/ jctb.3934.

Jha AK. Microbe-mediated nanotransformation: cadmium. Nano 2007; 2: 239–242.

Nagajyothi PC, Sreekanth TVM, Tettey CO, Jun YI, Mook SH. Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Bioorg. Med. Chem. Lett. 2014; 24: 4298–4303p. doi:10.1016/j.bmcl.2014.07.023.

Rajeshkumar S. Synthesis of silver nanoparticles using fresh bark of Pongamiapinnata and characterization of its antibacterial activity against gram positive and gram negative pathogens. Resour. Technol. 2016; 2: 30–35p. doi:10.1016/j.reffit.2016.06.003.

Paulkumar K, Rajeshkumar S, Gnanajobitha G, Vanaja M, Malarkodi C, Annadurai G. et al. Biosynthesis of silver chloride nanoparticles using Bacillus subtilis MTCC 3053 and assessment of its antifungal activity. ISRN Nanomater. 2013; 1–8p. doi:10.1155/2013/317963.

Paulkumar K, Gnanajobitha G, Vanaja M, Rajeshkumar S, Malarkodi C, Pandian K et al. Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens, Scientific World Journal. 2014; 829–894p. doi:10.1155/2014/829894.

Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G. Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int. J. Met. 2014; 1–8p. doi:10.1155/2014/692643.


Refbacks

  • There are currently no refbacks.