Open Access Open Access  Restricted Access Subscription or Fee Access

A Molecular Docking Approach for Unlocking the Potential of Bryophyllum peltatum Phytochemicals for Targeting Multiple Proteins in Mumps Treatment

S. Yogashree, Samiksha Bhor

Abstract


Objective: The Mumps virus is the source of the infectious illness mumps. It affects the parotid glands that make saliva. Swelling of this gland can cause severe pain in an individual. Finding the ADME qualities of several B. peltatum phytochemicals and determining which of these compounds may have the ability to prevent the mumps disease are the main objective of this investigation. Methods: The structure of Hemagglutinin-neuraminidase (HN) protein, was extracted from PDB. Molecular docking of this target protein along with ten different phytocompounds of B.peltatum was performed and its binding affinity was determined using PyRx and auto dock. Ramachandran plot was useful in analyzing the conformation of amino acid in protein. Furthermore, the physiochemical aspect of the ligand was found using ADME. Result: From the ten compounds, top 5 compounds showed highest biding affinity they are Quercetin, kaempferol, Caffeic acid, Ferulic acid, alpha amyrin and their ADME properties were analyzed. Out of 5, 2 compounds showed good ADME properties compared to others, these are Caffeic acid, and Ferulic acid. Conclusion: Current study shows that Caffeic acid and Ferulic acid can be reasonably effective against MD. Although there is always a room to do further research on this in future.


Full Text:

PDF

References


McCarthy, M., & Johnson, R. T. (1980). Morphological heterogeneity in relation to structural and functional properties of mumps virus. The Journal of general virology, 48(Pt 2), 395–399. https://doi.org/10.1099/0022-1317-48-2-395

Mühlemann, K. (2004). The molecular epidemiology of mumps virus. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 4(3), 215–219. https://doi.org/10.1016/j.meegid.2004.02.003

Almansour, I. (2020). Mumps Vaccines: Current Challenges and Future Prospects. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01999

Su, S.-B., Chang, H.-L., & Chen, A. K.-T. (2020). Current status of mumps virus infection: Epidemiology, pathogenesis, and vaccine. International Journal of Environmental Research and Public Health, 17(5), 1686. https://doi.org/10.3390/ijerph17051686

FOY, H. M., COONEY, M. K., HALL, C. E., Bor, E. V. A., & MALETZKY, A. J. (1971). Isolation of mumps virus from children with acute lower respiratory tract disease. American

Betakova, T., Svetlikova, D., & Gocnik, M. (2013). Overview of measles and mumps vaccine: origin, present, and future of vaccine production. Acta Virol, 57(2), 91–96.

Forgione, R. E., Di Carluccio, C., Kubota, M., Manabe, Y., Fukase, K., Molinaro, A., Hashiguchi, T., Marchetti, R., & Silipo, A. (2020). Structural basis for Glycan-receptor binding by mumps virus hemagglutinin-neuraminidase. Scientific Reports, 10(1), 1589. https://doi.org/10.1038/s41598-020-58559-6

Wu, H., Wang, F., Tang, D., & Han, D. (2021). Mumps orchitis: Clinical aspects and mechanisms. Frontiers in Immunology, 12, 582946. https://doi.org/10.3389/fimmu.2021.582946

Maillet, M., Bouvat, E., Robert, N., Baccard-Longère, M., Morel-Baccard, C., Morand, P., ... & Stahl, J. P. (2015). Mumps outbreak and laboratory diagnosis. Journal of Clinical Virology, 62, 14–19.

Kövamees J, Norrby E, Elango N. Complete nucleotide sequence of the hemagglutinin-neuraminidase (HN) mRNA of mumps virus and comparison of paramyxovirus HN proteins. Virus research. 1989 Jan 1;12(1):87–96.

Almansour, I. (2020). Mumps Vaccines: Current Challenges and Future Prospects. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01999

Forgione, R. E., Di Carluccio, C., Kubota, M., Manabe, Y., Fukase, K., Molinaro, A., ... & Silipo, A. (2020). Structural basis for Glycan-receptor binding by mumps virus hemagglutinin neuraminidase. Scientific reports, 10(1), 1589.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N.& Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235

Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal oF Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8.

Laskowski, R. A., Furnham, N., & Thornton, J. M. (2013). THE RAMACHANDRAN PLOT AND PROTEIN STRUCTURE VALIDATION. In Biomolecular Forms and Functions (pp. 62–75). WORLD SCIENTIFIC/INDIAN INST OF SCIENCE, INDIA.

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P.A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Research, 51(D1), D1373–D1380. https://doi.org/10.1093/nar/gkac956

O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33

Kondapuram, S. K., Sarvagalla, S., & Coumar, M. S. (2021). Docking-based virtual screening using PyRx tool: Autophagy target Vps34 as a case study. In Molecular Docking for Computer- Aided Drug Design (pp. 463–477). Elsevier.

Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.), 1263, 243–250. https://doi.org/10.1007/978-1-4939 2269-7_19

Zbiciak, A., & Markiewicz, T. (2023). A new extraordinary means of appeal in the Polish criminal procedure: the basic principles of a fair trial and a complaint against a cassatory judgment. Https://Doi.Org/10.33327/AJEE-18-6.2, 6(2), 1–18. doi:10.33327/ajee-18-6.2-a000209

Yadav, A. R., & Mohite, S. K. (2020). ADME Analysis of Phytochemical Constituents of Psidium guajava. Asian Journal of Research in Chemistry, 13(5), 373–375. doi:10.5958/0974 4150.2020.00070.x

Chen, X., Li, H., Tian, L., Li, Q., Luo, J., & Zhang, Y. (2020). Analysis of the physicochemical properties of acaricides based on Lipinski’s Rule of Five. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology, 27(9), 1397–1406. https://doi.org/10.1089/cmb.2019.0323

Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0

Almansour, I. (2020). Mumps Vaccines: Current Challenges and Future Prospects. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01999

Benet, L. Z., Hosey, C. M., Ursu, O., & Oprea, T. I. (2016). BDDCS, the rule of 5 and drugability. Advanced Drug Delivery Reviews, 101, 89–98. https://doi.org/10.1016/j.addr.2016.05.007

Erdemli, H., Akyol, S., Armutcu, F., & Akyol, O. (2015). Antiviral properties of caffeic acid phenethyl ester and its potential application. Journal of Intercultural Ethnopharmacology, 4(4), 344. https://doi.org/10.5455/jice.20151012013034

Khan, F., Bamunuarachchi, N. I., Tabassum, N., & Kim, Y.-M. (2021). Caffeic acid and its derivatives: Antimicrobial drugs toward microbial pathogens. Journal of Agricultural and Food Chemistry, 69(10), 2979–3004. https://doi.org/10.1021/acs.jafc.0c07579

Lee, H.-Y., Jeong, Y.-I., Kim, E. J., Lee, K. D., Choi, S.-H., Kim, Y. J., Kim, D. H., & Choi, K.- C. (2015). Preparation of caffeic acid phenethyl ester-incorporated nanoparticles and their biological activity. Journal of Pharmaceutical Sciences, 104(1), 144–154. https://doi.org/10.1002/jps.24278




DOI: https://doi.org/10.37591/(rrjobt).v13i1.1431

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Research & Reviews: A Journal of Biotechnology