Open Access Open Access  Restricted Access Subscription or Fee Access

The Role of Quercetin, Curcumin, Eugenol, and Andrographolide in COVID-19 Treatment: A Review of Their Mechanisms of Action and Clinical Efficacy

Sakshi Chaudhary

Abstract


The world has recently experienced the covid diseases. It became the global worry with no remedy initially. Later, different antiviral medications in the form of injections and nasal sprays began to be employed. Many studies have been conducted to determine the antiviral effects of phytochemical substances. The corona virus's spike protein interacts with the ACE2 receptors on the alveoli's surface to enter the cell. After that, the polyprotein is transformed into an effector protein by a number of protease enzymes, including Mpro, 3CLpro, and PLpro. There are several ways to stop the contagious illness from spreading, nevertheless we must somehow halt these behaviours from occurring. Many phytochemical compounds with antiviral activity can be found in nature. The potential antiviral effects of Quercetin, Curcumin, eugenol, and andrographolide against SARS-CoV- 2 infection were highlighted in this review.


Keywords


Angiotensin-converting enzyme 2, Transmembrane protease, serine 2, Main protease, Papain like protease, Spike protein.

Full Text:

PDF

References


Majumder, J., & Minko, T. (2021). Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19. The AAPS Journal, 23(1). https://doi.org/10.1208/s12248-020-00532-2

Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta bio medica: Atenei parmensis. 2020;91(1):157.

Hikmet, F., Méar, L., Edvinsson, Å., Micke, P., Uhlén, M., & Lindskog, C. (2020). The protein expression profile of ACE2 in human tissues. Molecular Systems Biology, 16(7).https://doi.org/10.15252/msb.20209610

Guizani, I., Fourti, N., Zidi, W., Feki, M., & Allal-Elasmi, M. (2021). SARS-CoV-2 and pathological matrix remodeling mediators. Inflammation Research, 70(8), 847–858. https://doi.org/10.1007/s00011-021-01487-6

Toldo, S., Bussani, R., Nuzzi, V., Bonaventura, A., Mauro, A. G., Cannatà, A., Abbate, A. (2020b). Inflammasome formation in the lungs of patients with fatal COVID-Inflammation Research, 70(1), 7–10. https://doi.org/10.1007/s00011-020-01413-2

Wiersinga, W. J., Rhodes, A., Cheng, A. C., Peacock, S. J., & Prescott, H. C. (2020). Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA, 324(8), 782–793. https://doi.org/10.1001/jama.2020.12839

del Rio, C., & Malani, P. N. (2020). COVID-19—New Insights on a Rapidly Changing Epidemic.JAMA. https://doi.org/10.1001/jama.2020.3072

Arya, R., Kumari, S., Pandey, B., Mistry, H., Bihani, S. C., Das, A., Prashar, V., Gupta, G. D., Panicker, L., & Kumar, M. (2021). Structural insights into SARS-CoV-2 proteins. Journal of molecular biology, 433(2), 166725. https://doi.org/10.1016/j.jmb.2020.11.024

Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T., Zhang, B., Yang, X. Rao, Z. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science (New York, N.Y.), 368(6492), 779–782. https://doi.org/10.1126/science.abb7498

Kotha, R. R., & Luthria, D. L. (2019). Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules (Basel, Switzerland), 24(16), 2930. https://doi.org/10.3390/molecules24162930

Zahedipour, F., Hosseini, S. A., Sathyapalan, T., Majeed, M., Jamialahmadi, T., Al-Rasadi, K., Banach, M., & Sahebkar, A. (2020). Potential effects of curcumin in the treatment of COVID-19 infection. Phytotherapy research : PTR, 34(11), 2911–2920. https://doi.org/10.1002/ptr.6738

Paidi, R. K., Jana, M., Raha, S., McKay, M., Sheinin, M., Mishra, R. K., & Pahan, K. (2021). Eugenol, a Component of Holy Basil (Tulsi) and Common Spice Clove, Inhibits the Interaction Between SARS-CoV-2 Spike S1 and ACE2 to Induce Therapeutic Responses. Journal of

neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology, 16(4), 743–755. https://doi.org/10.1007/s11481-021-10028-1

Schulte, B., König, M., Escher, B. I., Wittenburg, S., Proj, M., Wolf, V., Lemke, C., Schnakenburg, G., Sosič, I., Streeck, H., Müller, C. E., Gütschow, M., & Steinebach, C. (2022). Andrographolide Derivatives Target the KEAP1/NRF2 Axis and Possess Potent Anti-SARS- CoV-2 Activity. ChemMedChem, 17(5), e202100732. https://doi.org/10.1002/cmdc.202100732

Mani, J. S., Johnson, J. B., Steel, J. C., Broszczak, D. A., Neilsen, P. M., Walsh, K. B., & Naiker, M. (2020). Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus research, 284, 197989. https://doi.org/10.1016/j.virusres.2020.197989

Arunachalam, K., Sasidharan, S. P., & Yang, X. (2022). A concise review of mushrooms antiviral and immunomodulatory properties that may combat against COVID-19. Food chemistry advances, 1, 100023. https://doi.org/10.1016/j.focha.2022.100023

Costela-Ruiz, V. J., Illescas-Montes, R., Puerta-Puerta, J. M., Ruiz, C., & Melguizo-Rodríguez, L. (2020). SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine & growth

factor reviews, 54, 62–75. https://doi.org/10.1016/j.cytogfr.2020.06.001

Kumar, V., Suman, U., Rubal, & Yadav, S. K. (2018). Flavonoid Secondary Metabolite: Biosynthesis and Role in Growth and Development in Plants. Recent Trends and Techniques in Plant Metabolic Engineering, 19–45. https://doi.org/10.1007/978-981-13-2251-8_2

Jana, N., Břetislav, G., Pavel, S., & Pavla, U. (2018). Potential of the Flavonoid Quercetin to Prevent and Treat Cancer-Current Status of Research. Potenciál flavonoidu quercetinu v prevenci a léčbě nádorů-současný stav výzkumu. Klinicka onkologie : casopis Ceske a Slovenske

onkologicke spolecnosti, 31(3), 184–190. https://doi.org/10.14735/amko2018184

Deepika, & Maurya, P. K. (2022). Health Benefits of Quercetin in Age-Related Diseases. Molecules (Basel, Switzerland), 27(8), 2498. https://doi.org/10.3390/molecules27082498

Derosa, G., Maffioli, P., D'Angelo, A., & Di Pierro, F. (2021). A role for quercetin in coronavirus disease 2019 (COVID-19). Phytotherapy research: PTR, 35(3), 1230–1236.https://doi.org/10.1002/ptr.6887

Xu, D., Hu, M. J., Wang, Y. Q., & Cui, Y. L. (2019). Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules (Basel, Switzerland), 24(6), 1123. https://doi.org/10.3390/molecules24061123

Kopacz, A., Rojo, A. I., Patibandla, C., Lastra-Martínez, D., Piechota-Polanczyk, A., Kloska, D., Jozkowicz, A., Sutherland, C., Cuadrado, A., & Grochot-Przeczek, A. (2022). Overlooked and valuable facts to know in the NRF2/KEAP1 field. Free radical biology & medicine, 192, 37–49. https://doi.org/10.1016/j.freeradbiomed.2022.08.044

Bhowmik, D., Nandi, R., Prakash, A., & Kumar, D. (2021). Evaluation of flavonoids as 2019- nCoV cell entry inhibitor through molecular docking and pharmacological analysis. Heliyon, 7(3), e06515. https://doi.org/10.1016/j.heliyon.2021.e06515

Chainoglou, E., & Hadjipavlou-Litina, D. (2020). Curcumin in Health and Diseases: Alzheimer's Disease and Curcumin Analogues, Derivatives, and Hybrids. International journal of molecular sciences, 21(6), 1975. https://doi.org/10.3390/ijms21061975

Purushothaman, A., Teena Rose, K. S., Jacob, J. M., Varatharaj, R., Shashikala, K., & Janardanan, D. (2022). Curcumin analogues with improved antioxidant properties: A theoretical exploration. Food chemistry, 373(Pt B), 131499. https://doi.org/10.1016/j.foodchem.2021.131499

Giordano, A., & Tommonaro, G. (2019). Curcumin and Cancer. Nutrients, 11(10), 2376. https://doi.org/10.3390/nu11102376

Chainoglou, E., & Hadjipavlou-Litina, D. (2020). Curcumin in Health and Diseases: Alzheimer's Disease and Curcumin Analogues, Derivatives, and Hybrids. International journal of molecular sciences, 21(6), 1975. https://doi.org/10.3390/ijms21061975

Pivari, F., Mingione, A., Brasacchio, C., & Soldati, L. (2019). Curcumin and Type 2 Diabetes Mellitus: Prevention and Treatment. Nutrients, 11(8), 1837. https://doi.org/10.3390/nu11081837

Dei Cas, M., & Ghidoni, R. (2019). Dietary Curcumin: Correlation between Bioavailability and Health Potential. Nutrients, 11(9), 2147. https://doi.org/10.3390/nu11092147

Gandapu, U., Chaitanya, R. K., Kishore, G., Reddy, R. C., & Kondapi, A. K. (2011). Curcumin- loaded apotransferrin nanoparticles provide efficient cellular uptake and effectively inhibit HIV-1 replication in vitro. PloS one, 6(8), e23388. https://doi.org/10.1371/journal.pone.0023388

Wen, C. C., Kuo, Y. H., Jan, J. T., Liang, P. H., Wang, S. Y., Liu, H. G., Lee, C. K., Chang, S. T., Kuo, C. J., Lee, S. S., Hou, C. C., Hsiao, P. W., Chien, S. C., Shyur, L. F., & Yang, N. S. (2007). Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. Journal of medicinal chemistry, 50(17), 4087–4095. https://doi.org/10.1021/jm070295s

Huynh, T., Wang, H., & Luan, B. (2020). In Silico Exploration of the Molecular Mechanism of Clinically Oriented Drugs for Possibly Inhibiting SARS-CoV-2's Main Protease. The journal of physical chemistry letters, 11(11), 4413–4420. https://doi.org/10.1021/acs.jpclett.0c00994

Vlachakis, D., Papakonstantinou, E., Mitsis, T., Pierouli, K., Diakou, I., Chrousos, G., & Bacopoulou, F. (2020). Molecular mechanisms of the novel coronavirus SARS-CoV-2 and potential anti-COVID19 pharmacological targets since the outbreak of the pandemic. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 146, 111805. https://doi.org/10.1016/j.fct.2020.111805

Mounce, B. C., Cesaro, T., Carrau, L., Vallet, T., & Vignuzzi, M. (2017). Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral research, 142, 148–157. https://doi.org/10.1016/j.antiviral.2017.03.014

Khalil, A. A., Rahman, U. ur, Khan, M. R., Sahar, A., Mehmood, T., & Khan, M. (2017). Essential oil eugenol: sources, extraction techniques and nutraceutical perspectives. RSC Advances, 7(52), 32669–32681. https://doi.org/10.1039/c7ra04803c

Batiha, G. E., Alkazmi, L. M., Wasef, L. G., Beshbishy, A. M., Nadwa, E. H., & Rashwan, E. K. (2020). Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules, 10(2), 202.

https://doi.org/10.3390/biom10020202

Mateen, S., Shahzad, S., Ahmad, S., Naeem, S. S., Khalid, S., Akhtar, K., Rizvi, W., & Moin, S. (2019). Cinnamaldehyde and eugenol attenuates collagen induced arthritis via reduction of free radicals and pro-inflammatory cytokines. Phytomedicine : international journal of phytotherapy and phytopharmacology, 53, 70–78. https://doi.org/10.1016/j.phymed.2018.09.004

Sun, W. J., Lv, W. J., Li, L. N., Yin, G., Hang, X., Xue, Y., Chen, J., & Shi, Z. (2016). Eugenol confers resistance to Tomato yellow leaf curl virus (TYLCV) by regulating the expression of SlPer1 in tomato plants. New biotechnology, 33(3), 345–354.

https://doi.org/10.1016/j.nbt.2016.01.001

Jada, S. R., Subur, G. S., Matthews, C., Hamzah, A. S., Lajis, N. H., Saad, M. S., Stevens, M. F., & Stanslas, J. (2007). Semisynthesis and in vitro anticancer activities of andrographolide analogues. Phytochemistry, 68(6), 904–912. https://doi.org/10.1016/j.phytochem.2006.11.031

Yen, C. C., Lii, C. K., Chen, C. C., Li, C. C., Tseng, M. H., Lo, C. W., Liu, K. L., Yang, Y. C., & Chen, H. W. (2023). Andrographolide Inhibits Lipotoxicity-Induced Activation of the NLRP3 Inflammasome in Bone Marrow-Derived Macrophages. The American journal of Chinese

medicine, 51(1), 129–147. https://doi.org/10.1142/S0192415X23500088

Husen, R., Pihie, A. H., & Nallappan, M. (2004). Screening for antihyperglycaemic activity in several local herbs of Malaysia. Journal of ethnopharmacology, 95(2–3), 205–208. https://doi.org/10.1016/j.jep.2004.07.004

Gupta, Swati & Mishra, KP & Gupta, Rupali & Singh, Shashi. (2021). Andrographolide – A prospective remedy for chikungunya fever and viral arthritis. International Immunopharmacology. 99. 108045. 10.1016/j.intimp.2021.108045

Adiguna, S. P., Panggabean, J. A., Atikana, A., Untari, F., Izzati, F., Bayu, A., Rosyidah, A., et al. (2021). Antiviral Activities of Andrographolide and Its Derivatives: Mechanism of Action andDelivery System. Pharmaceuticals, 14(11), 1102. MDPI AG. Retrieved from

http://dx.doi.org/10.3390/ph14111102

Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant

Extracts. Plants (Basel, Switzerland), 6(4), 42. https://doi.org/10.3390/plants6040042

Burgos, R. A., Alarcón, P., Quiroga, J., Manosalva, C., & Hancke, J. (2020). Andrographolide, an Anti-Inflammatory Multitarget Drug: All Roads Lead to Cellular Metabolism. Molecules (Basel,Switzerland), 26(1), 5. https://doi.org/10.3390/molecules26010005

Sandborn, W. J., Targan, S. R., Byers, V. S., Rutty, D. A., Mu, H., Zhang, X., & Tang, T. (2013). Andrographis paniculata extract (HMPL 004) for active ulcerative colitis. The American journal of gastroenterology, 108(1), 90–98. https://doi.org/10.1038/ajg.2012.340

Veerasamy, R., Karunakaran, R. Molecular docking unveils the potential of andrographolide derivatives against COVID-19: an in silico approach. J Genet Eng Biotechnol 20, 58 (2022). https://doi.org/10.1186/s43141-022-00339-y




DOI: https://doi.org/10.37591/(rrjobt).v13i1.1416

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Research & Reviews: A Journal of Biotechnology