Open Access Open Access  Restricted Access Subscription or Fee Access

In-silico Design of Multi-epitope Vaccine for Tackling Type-1 Parainfluenza Virus

Zaid Khan, Sana Sumera, Mekkanti Manasa Rekha

Abstract


Human parainfluenza viruses (HPIV) often cause breathing infections, particularly in kids and infants. HPIV-1 is known for causing severe croup, yet no approved vaccines exist for HPIV infections. This study employed an in-silico approach to design a potential vaccine candidate targeting the fusion glycoprotein antigen of HPIV-1. Results highlighted that B-cell and T-cell epitopes were successfully identified from the fusion glycoprotein antigen using in-silico methods. Epitopes passing antigenicity, allergenicity, and toxicity assessments were selected and connected using appropriate linkers. The constructed vaccine exhibited favorable physiochemical properties, structural stability, and strong binding affinity with the TLR (Toll like receptor)-8. The vaccine sequence was successfully cloned into the pET-28a (+) vector. In Conclusion This study presents a promising development in the quest for an effective HPIV-1 vaccine. The design and construction of the multi-epitope vaccine, along with its structural validation, provide a solid foundation for further research. However, additional in vitro and in vivo investigations are crucial to assess the vaccine's efficacy, immunogenicity, and safety prior to clinical application.

Keywords


Human parainfluenza virus, Antigen, In-silico vaccine design, In-silico clonin

Full Text:

PDF

References


REFERENCES

Branche AR, Falsey AR (2016) Parainfluenza virus infection. Semin Respir Crit Care Med 37:538–

https://doi.org/10.1055/s-0036-1584798

Elboukari H, Ashraf M (2023) Parainfluenza Virus. StatPearls Publishing

Slobod KS, Shenep JL, Luján-Zilbermann J, Allison K, Brown B, Scroggs RA, Portner A,

Coleclough C, Hurwitz JL (2004) Safety and immunogenicity of intranasal murine parainfluenza

virus type 1 (Sendai virus) in healthy human adults. Vaccine 22:3182-3186.

https://doi.org/10.1016/j.vaccine.2004.01.053

Smith CB, Purcell RH, Bellanti JA, Chanock RM, Laine P (1966) Protective effect of antibody to

parainfluenza type 1 virus. N Engl J Med 275:1145-1152. https://doi.org/10.1056/nejm

Pawełczyk M, Kowalski ML (2017) The Role of Human Parainfluenza Virus Infections in the

Immunopathology of the Respiratory Tract. Curr Allergy Asthma Rep 17:1-10.

https://doi.org/10.1007/s11882-017-0685-2

Schomacker H, Schaap-Nutt A, Collins PL, Schmidt AC (2012). Pathogenesis of acute respiratory

illness caused by human parainfluenza viruses. Curr Opin Virol 2:294-299.

https://doi.org/10.1016/j.coviro.2012.02.001

Moscona A (2005) Entry of parainfluenza virus into cells as a target for interrupting childhood

respiratory disease. J. Clin. Invest 115:1688–1698. https://doi.org/10.1172/jci25669

Henrickson KJ (2003) Parainfluenza viruses. Clin Microbiol Rev 16:242-264.

https://doi.org/10.1128/cmr.16.2.242-264.2003

Russell CJ, Simões EAF, Hurwitz JL (2018) Vaccines for the Paramyxoviruses and Pneumoviruses:

Successes, Candidates, and Hurdles. Viral Immunol 31:133–141.

https://doi.org/10.1089/vim.2017.0137

van Wyke Coelingh K, Tierney EL (1989) Antigenic and functional organization of human

parainfluenza virus type 3 fusion glycoprotein. J Virol 63:375-382.

https://doi.org/10.1128/jvi.63.1.375-382.1989

Wang Y, Wang Q, Huang H, Huang W, Chen Y, McGarvey PB, Wu CH, Arighi CN (2021). A

crowdsourcing open platform for literature curation in UniProt. PLoS Biol 19:e3001464.

https://doi.org/10.1371/journal.pbio.3001464

Doytchinova IA, Flower DR (2007). VaxiJen: a server for prediction of protective antigens, tumour

antigens and subunit vaccines. BMC Bioinformatics 8:1-7. https://doi.org/10.1186/1471-2105-8-4

Dimitrov I, Bangov I, Flower DR, Doytchinova I (2014). AllerTOP v. 2—a server for in silico

prediction of allergens. J Mol Model 20:1-6. https://doi.org/10.1007/s00894-014-2278-5

Xiao X, Wu Z-C, Chou K-C (2011). A multi-label classifier for predicting the subcellular

localization of gram-negative bacterial proteins with both single and multiple sites. PLoS One

:e20592. https://doi.org/10.1371/journal.pone.0020592

Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based

B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45:W24-W29.

https://doi.org/10.1093/nar/gkx346

Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters

B (2019) The immune epitope database (IEDB): 2018 update. Nucleic Acids Res 47:D339-D343.

https://doi.org/10.1093/nar/gky1006

Yan F, Polk DB (2020) Probiotics and probiotic-derived functional factors—mechanistic insights

into applications for intestinal homeostasis. Front Immunol 11:1428.

https://doi.org/10.3389/fimmu.2020.01428

Naveed M, Tehreem S, Arshad S, Bukhari SA, Shabbir MA, Essa R, Ali N, Zaib S, Khan A, Al-

Harrasi A, Khan I (2021) Design of a novel multiple epitope-based vaccine: An immunoinformatics

approach to combat SARS-CoV-2 strains. J Infect Public Health 14:938-946.

https://doi.org/10.1016/j.jiph.2021.04.010

Dong R, Chu Z, Yu F, Zha Y (2020) Contriving Multi-Epitope Subunit of Vaccine for COVID-19:

Immunoinformatics Approaches. Front. Immunol 11:1784.

https://doi.org/10.3389/fimmu.2020.01784

Hasan M, Mia M (2022) Exploratory Algorithm of a Multi-epitope-based Subunit Vaccine

Candidate Against Cryptosporidium hominis: Reverse Vaccinology-Based Immunoinformatic

Approach. Int J Pept Res Ther 28(5):134. https://doi.org/10.1007/s10989-022-10438-6

Maleki A, Russo G, Parasiliti Palumbo GA, Pappalardo F (2022) In silico design of recombinant

multi-epitope vaccine against influenza A virus. BMC Bioinform 22(14):1-18.

https://doi.org/10.1186/s12859-022-04581-6

Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein

identification and analysis tools on the ExPASy server. Springer Protocols Handbooks. Humana

press 571-607. https://doi.org/10.1385/1-59259-890-0:571

Hon J, Marusiak M, Martinek T, Zendulka J, Bednar D, Damborsky J (2021) SoluProt: prediction

of soluble protein expression in Escherichia coli. Bioinformatics 37:23-28.

https://doi.org/10.1093/bioinformatics/btaa1102

Jones DT (1999) Protein secondary structure prediction based on position-specific scoring

matrices. J Mol Biol 292:195-202. https://doi.org/10.1006/jmbi.1999.3091

Wang S, Li W, Liu S, Xu J (2016) RaptorX-Property: a web server for protein structure property

prediction. Nucleic Acids Res 44:W430-W435. https://doi.org/10.1093/nar/gkw306

Ko J, Park H, Heo L, Seok C (2012) GalaxyWEB server for protein structure prediction and

refinement. Nucleic Acids Res 40:W294-W297. https://doi.org/10.1093/nar/gks493

Wiederstein M, Sippl MJ (2007). ProSA-web: interactive web service for the recognition of errors

in three-dimensional structures of proteins. Nucleic Acids Res 35:W407-W410.

https://doi.org/10.1093/nar/gkm290

Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check

the stereochemical quality of protein structures. J. Appl. Cryst 26:283-291.

https://doi.org/10.1107/s0021889892009944

Xagorari A, Chlichlia K (2008) Toll-like receptors and viruses: induction of innate antiviral immune

responses. Open Microbiol J 2:49. https://doi.org/10.2174/1874285800802010049

Desta IT, Porter KA, Xia B, Kozakov D, Vajda S (2020) Performance and its limits in rigid body

protein-protein docking. Structure 28:1071-1081.e1073. https://doi.org/10.1016/j.str.2020.06.006

López-Blanco JR, Aliaga JI, Quintana-Ortí ES, Chacón (2014) iMODS: internal coordinates normal

mode analysis server. Nucleic Acids Res 42:W271-W276. https://doi.org/10.1093/nar/gku339

Rice P, Longden I, Bleasby (2000) EMBOSS: the European molecular biology open software suite.

Trends Genet 16:276-277. https://doi.org/10.1016/s0168-9525(00)02024-2

Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, Jahn D (2005) JCat: a novel

tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res

:W526-W531. https://doi.org/10.1093/nar/gki376

Samad A, Ahammad F, Nain Z, Alam R, Imon RR, Hasan M, Rahman MS (2022) Designing a

multi-epitope vaccine against SARS-CoV-2: An immunoinformatics approach. J Biomol Struct

Dyn 40:14-30. https://doi.org/10.1080/07391102.2020.1792347

Yang Z, Bogdan P, Nazarian (2021) An in silico deep learning approach to multi-epitope vaccine

design: a SARS-CoV-2 case study. Sci Rep 11:1-21. https://doi.org/10.21203/rs.3.rs-36528/v1

Naveed M, Yaseen AR, Khalid H, Ali U, Rabaan AA, Garout M, Halwani MA, Al Mutair A,

Alhumaid S, Al Alawi Z, Alhashem YN (2022) Execution and Design of an Anti HPIV-1 Vaccine

with Multiple Epitopes Triggering Innate and Adaptive Immune Responses: An Immunoinformatic

Approach. Vaccines 10:869. https://doi.org/10.3390/vaccines10060869

Khatoon N, Pandey RK, Prajapati VK (2017) Exploring Leishmania secretory proteins to design B

and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep 7:1-12.

https://doi.org/10.1038/s41598-017-08842-w

Howard LM, Rankin DA, Spieker AJ, Gu W, Haddadin Z, Probst V, Rahman H, McHenry R, Pulido

CG, Williams JV, Faouri S (2021) Clinical features of parainfluenza infections among young

children hospitalized for acute respiratory illness in Amman, Jordan. BMC Infect Dis 2:1-9.

https://doi.org/10.1186/s12879-021-06001-1

Marcink TC, Porotto M, Moscona A (2021) Parainfluenza virus entry at the onset of infection. Adv

Virus Res 111:1–29. https://doi.org/10.1016/bs.aivir.2021.07.001

Linster M, Do LA, Minh NN, Chen Y, Zhe Z, Tuan TA, Tuan HM, Su YC, van Doorn HR, Moorthy

M, Smith GJ (2018) Clinical and molecular epidemiology of human parainfluenza viruses 1–4 in

children from Viet Nam. Sci Rep 81-8. https://doi.org/10.1038/s41598-018-24767-4

Nelluri KDD, Ammulu MA, Durga ML, Sravani M, Kumar VP, Poda S (2022) In silico multi-epitope Bunyumwera virus vaccine to target virus nucleocapsid N protein. J Genet Eng Biotechnol20(1):89. https://doi.org/10.1186/s43141-022-00355-y

Akhtar N, Singh A, Upadhyay AK, Mannan MA (2022) Design of a multi-epitope vaccine against

the pathogenic fungi Candida tropicalis using an in silico approach. J Genet Eng Biotechnol 20:140.

https://doi.org/10.1186/s43141-022-00415-3

Shahab M, Hayat C, Sikandar R, Zheng G, Akter S (2022) In silico designing of a multi-epitope

vaccine against Burkholderia pseudomallei: reverse vaccinology and immunoinformatics. J Genet

Eng Biotechnol 20:100. https://doi.org/10.1186/s43141-022-00379-4




DOI: https://doi.org/10.37591/(rrjobi).v10i2.1467

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Research & Reviews: A Journal of Bioinformatics