Open Access Open Access  Restricted Access Subscription or Fee Access

Mechanical Characterization of Glass Fiber Reinforced Polyester Composites Modified with Silane Treated Alumina Nanofibers

Jitendra S Tate, Harish Kallagunta

Abstract


Alumina nanofibers pristine and vinyl silane treated are used as nanofillers in polyester matrix reinforced with woven glass fibers at loading levels of 0.25 w%, 0.5 wt%, 0.75 wt%, and 1.00 wt% and the static mechanical properties are evaluated. The effect of silane treatment on the mechanical behavior, interface damage behavior for these composites is compared. The tensile strength of composites increased with addition of alumina nanofibers and a consistent improvement >20% is observed VT-composite. Additionally, the stiffness enhanced by 3X for the VT-composites. The flexure strength enhancement by 12.14%, 6.16%, 8.07%, and 15.2%, respectively, for 0.25 wt%. 0.5 wt%, 0.75 wt%, and 1 wt% loading level of vinyl silane treated alumina nanofiber modified composites. The flexural stiffness for these composites improved by 22.79%, 14.81%, 22.61%, and 35.57%, respectively. However, the short beam ILSS property was noted to have a maximum improvement by 19.03% and 25.69% for 0.25 wt% and 1.00 wt% loading level of vinyl silane treated alumina nanofiber, respectively. The Weibull distribution analysis on the strength values of the composites revealed a wide deviation with theoretical values significantly lower when compared with experimental values. Weibull studies showed higher scale parameter increment of 34% and 35% for tensile strength at 1.00 wt% VTcomposite and UT-composite, respectively; flexure strength at 16% and 6.96% for 1.00 wt% and 0.25 wt% VT-composite and UT-composite, respectively; ILSS at 94% and 52% for 0.25 wt%, and 0.75 wt% VT-composite and UT-composite, respectively. The information from Weibull distribution in the study will be practical for composite design and manufacturers to ensure dependability of material system.


Keywords


Glass fiber composites, Unsaturated polyester resin, Silane treatment, Alumina nanofibers, Electron Microscopy, Mechanical Testing, Statistical Analysis

Full Text:

PDF

References


Nayak RK, Mahato KK, Ray BC. Water absorption behavior, mechanical and thermal properties of Nano TiO2 enhanced glass fiber reinforced polymer composites. Compos A: Appl Sci Manuf. 2016; 90: 736–747. doi: 10.1016/j.compositesa.2016.09.003.

Agwa MA, Youssef SM, Ali-Eldin SS, Megahed M. Integrated vacuum assisted resin infusion and resin transfer molding technique for manufacturing of nano-filled glass fiber reinforced epoxy composite. J Ind Text. 2022; 51 (3_Suppl): 5113S–5144S. doi: 10.1177/1528083720932337.

Zahrouni A, Bendaoued A, Salhi R. Effect of sol-gel derived TiO2 nanopowders on the mechanical and structural properties of a polymer matrix nanocomposites developed by vacuum-assisted resin transfer molding (VARTM). Ceram Int. 2021; 47 (7): 9755–9762. doi: 10.1016/j.ceramint.2020.12.115.

Nayak RK, Mahato KK, Routara BC, Ray BC. Evaluation of mechanical properties of Al2O3 and TiO2 nanofilled enhanced glass fiber reinforced polymer composites. J Appl Polym Sci. 2016; 133 (47). doi: 10.1002/app.44274.

Guru Mahesh G, Jayakrishna K. Evaluation of mechanical properties of nano filled glass fiber reinforced composites. Mater Today Proc. 2020; 22: 3305–3311. doi: 10.1016/j.matpr.2020.03.293.

Vinay SS, Venkatesh CV. Effect of Nano-Al2O3 particles on mechanical and wear behaviour of glass fibre epoxy composites. Mater Today Proc. 2021; 46: 9004–9007. doi: 10.1016/j.matpr.2021.05.378.

Thipperudrappa S, Hiremath A, Kurki Nagaraj B. Synergistic effect of ZnO and TiO2 nanoparticles on the thermal stability and mechanical properties of glass fiber-reinforced LY556 epoxy composites. Polym Compos. 2021; 42 (9): 4831–4844. doi: 10.1002/pc.26193.

Preda N, Costas A, Lilli M, Sbardella F, Scheffler C, Tirillò J, et al. Functionalization of basalt fibers with ZnO nanostructures by electroless deposition for improving the interfacial adhesion of basalt fibers/epoxy resin composites. Compos A. 2021; 149: 106488. doi:10.1016/j.compositesa.2021.106488.

Marashizadeh P, Abshirini M, Saha MC, Liu Y. Multi-scale analysis of aligned ZnO nanowires reinforced hybrid composites under three-point bending. Compos Interfaces. 2021; 28 (10): 961– 78. doi: 10.1080/09276440.2020.1833613.

Erdoğdu YE, Korkmaz EE, Temiz Ş. Effect of graphene nanoplatelet filling on mechanical properties of natural fiber reinforced polymer composites. J Materials Testing. 2021; 63 (4): 322–328.

Veerakumar VGS, Shanmugavel BP, Paskaramoorthy R, Harish S. The influence of graphene nanoplatelets on the tensile and impact behavior of glass-fiber-reinforced polymer composites. J Mater Eng Perform. 2021; 30 (1): 596–609. doi: 10.1007/s11665-020-05335-2.

Pothnis JR, Kalyanasundaram D, Gururaja S. Enhancement of open hole tensile strength via alignment of carbon nanotubes infused in glass fiber-epoxy-CNT multi-scale composites. Compos A: Appl Sci Manuf. 2021; 140: 106155. doi: 10.1016/j.compositesa.2020.106155.

Sabri FNAM, Zakaria MR, Akil HM. Enhanced flexural strength of carbon nanotubes-glass fiber epoxy composite laminates using an electrospray deposition technique. Polym Compos. 2021; 42 (5): 2556–2564. doi: 10.1002/pc.26001.

Ganesh Gupta K BNVS, Yadav A, Hiremath MM, Prusty RK, Ray BC. Enhancement of mechanical properties of glass fiber reinforced vinyl ester composites by embedding multi-walled carbon nanotubes through solution processing technique. Mater Today Proc. 2020; 27: 1045–1050. doi: 10.1016/j.matpr.2020.01.391.

Yildiz K, Gürkan İ, Turgut F, Cebeci FÇ, Cebeci H. Fracture toughness enhancement of fuzzy CNT-glass fiber reinforced composites with a combined reinforcing strategy. Compos Commun. 2020; 21: 100423. doi: 10.1016/j.coco.2020.100423.

Sapiai N, Jumahat A, Jawaid M, Midani M, Khan A. Tensile and flexural properties of silica nanoparticles modified unidirectional kenaf and hybrid glass/kenaf epoxy composites. Polymers. 2020; 12 (11). doi: 10.3390/polym12112733, PMID 33217951.

Raghul KS, Logesh M, Kiran Kisshore R, Muhila Ramanan P, Muralitharan G. Mechanical behaviour of sisal palm glass fiber reinforced composite with addition of nano silica. Mater Today Proc. 2021; 37: 1427–1431. doi: 10.1016/j.matpr.2020.07.063.

Ren D, Li B, Chen S, Xu M, Liu X. Investigation on curing reaction of phthalonitrile resin with nanosilica and the properties of their glass fiber-reinforced composites. J Appl Polym Sci. 2021; 138 (5): 49777. doi: 10.1002/app.49777.

Tate JS, Akinola AT, Espinoza S, Gaikwad S, Kannabiran Vasudevan DK, Sprenger S, et al. Tension–tension fatigue performance and stiffness degradation of nanosilica-modified glass fiberreinforced composites. J Compos Mater. 2018; 52 (6): 823–834. doi: 10.1177/0021998317714855. 20. Sapiai N, Jumahat A, Shaari N, Tahir A. Mechanical properties of nanoclay-filled kenaf and hybrid glass/kenaf fiber composites. Mater Today Proc. 2021; 46: 1787–1791. doi: 10.1016/j.matpr.2020.08.025.

Chee SS, Jawaid M, Alothman OY, Fouad H. Effects of nanoclay on mechanical and dynamic mechanical properties of bamboo/kenaf reinforced epoxy hybrid composites. Polymers. 2021; 13 (3). doi: 10.3390/polym13030395, PMID 33513718.

Shelly D, Nanda T, Mehta R. Addition of compatibilized nanoclay and UHMWPE fibers to epoxy based GFRPs for improved mechanical properties. Compos A: Appl Sci Manuf. 2021; 145: 106371. doi: 10.1016/j.compositesa.2021.106371.

Joseph HK. Polymer nanocomposites: processing, characterization, and applications. 1st ed. New

York, NY, USA: McGraw-Hill Education; 2006.

Rajanish M, Nanjundaradhya NV, Sharma RS, Shivananda HK. Alumina nanoparticles enhance the directional tensile properties of glass/epoxy composite. Adv Compos Lett. 2016; 25 (1). doi: 10.1177/096369351602500103.

Mechanical Characterization of Glass Fiber Reinforced Polyester Kallagunta and Tate

Yousri OM, Abdellatif MH, Bassioni G, Effect of nanoparticles on the mechanical and physical properties of epoxy composite. Arabian J Sci Eng. 2018; 43 (3): 1511–1517.

Mohanty A, Srivastava VK. Effect of alumina nanoparticles on the enhancement of impact and flexural properties of the short glass/carbon fiber reinforced epoxy based composites. Fibers Polym. 2015; 16 (1): 188–195. doi: 10.1007/s12221-015-0188-5.

Ji QL, Zhang MQ, Rong MZ, Wetzel B, Friedrich K. Tribological properties of surface modified nano-alumina/epoxy composites. J Mater Sci. 2004; 39 (21): 6487–6493. doi: 10.1023/B:JMSC.0000044887.27884.1e.

Hanemann T. Influence of dispersants on the flow behaviour of unsaturated polyester–alumina composites. Compos A: Appl Sci Manuf. 2006; 37 (5): 735–7341. doi: 10.1016/j.compositesa.2005. 06.006.

Drah A, Kovačević T, Rusmirović J, Tomić N, Brzić S, Bogosavljavić M, et al. Effect of surface activation of alumina particles on the performances of thermosetting-based composite materials. J Compos Mater. 2019; 53 (19): 2727–2742. doi: 10.1177/0021998319839133.

Kallagunta HSP, SP, Nahar A, Tate J. (2020). Assessment of effects of alumina nanofibers on wettability, viscosity, and mechanical properties of unsaturated polyester. [Online] Society for the Advancement of Material and Process Engineering. Available at https://cdn.ymaws.com/www. nasampe.org/resource/resmgr/VPS_Market_Applications.pdf [Accessed on June 2023]

Wu H, Krifa M, Koo J. Functionalized Nafen™ alumina nanofiber reinforced Polyamide 6 nanocomposites: mechanical, thermal and flame-retardant properties. In: Proceedings of the SAMPE Conference Proceedings. 2015 May 18-21; Baltimore, MD: Society for the Advancement of Material and Process Engineering; 2015.

Rahman AS, Jackson P, Radford DW. Improved toughness and delamination resistance in continuous fiber reinforced geopolymer composites via incorporation of nano-fillers. Cem Concr Compos. 2020; 108: 103496. doi: 10.1016/j.cemconcomp.2019.103496.

Saunders Z, Noack CW, Dzombak DA, Lowry GV. Characterization of engineered alumina nanofibers and their colloidal properties in water. J Nanopart Res. 2015; 17 (3): 140. doi: 10.1007/s11051-015-2942-4.

Lebedev DV, Shiverskiy AV, Simunin MM, Solodovnichenko VS, Parfenov VA, Bykanova VV, et al. Preparation and ionic selectivity of carbon-coated alumina nanofiber membranes. Pet Chem. 2017; 57 (4): 306–317. doi: 10.1134/S096554411704003X.

Ryzhkova II, Lebedeva DV, Solodovnichenkoa VS, Shiverskiya AV, Simunina MM, Parfenovd VA. Experimental and modelling study of ionic selectivity in carbon coated alumina nanofiber membranes. Chem Eng Trans. 2017; 60: 253–258.

Solodovnichenko VS, Lebedev DV, Bykanova VV, Shiverskiy AV, Simunin MM, Parfenov VA et al. Carbon coated alumina nanofiber membranes for selective ion transport. Adv Eng Mater. 2017; 19 (11): 1700244. doi: 10.1002/adem.201700244.

Chen B, Kondoh K, Li JS, Qian M. Extraordinary reinforcing effect of carbon nanotubes in aluminium matrix composites assisted by in-situ alumina nanoparticles. Compos B Eng. 2020; 183: 107691. doi: 10.1016/j.compositesb.2019.107691.

Chen Y, Qin H, Kurganova YA, Gaaze VK. A method for introduction of Al 2 O 3 nanofiber into aluminum alloy. IOP Conf S Mater Sci Eng. 2018; 347: 012050. doi: 10.1088/1757- 899X/347/1/012050.

Kallagunta H, Tate JS. Low-velocity impact behavior of glass fiber epoxy composites modified with nanoceramic particles. J Compos Mater. 2020; 54 (16): 2217–2228. doi: 10.1177/0021998319893435.

Hosur M, Mahdi T, Jeelani S. Studies on the performance of multi-phased carbon/epoxy composites with nanoclay and multi-walled carbon nanotubes. Multiscale Multidiscip Model Exp Des. 2018; 1 (4): 255–268. doi: 10.1007/s41939-018-0017-9.

Gao J, Zhao B, Itkis ME, Bekyarova E, Hu H, Kranak V, et al. Chemical engineering of the singlewalled carbon nanotube−nylon 6 interface. J Am Chem Soc. 2006; 128 (23): 7492–7496. doi: 10.1021/ja057484p, PMID 16756303.

Attukur Nandagopal R, Narasimalu S, Chai GB. Study of statistically significant strength degradation of hygrothermal aged CFRP and its Weibull analysis. Compos Commun. 2021; 23: 100566. doi: 10.1016/j.coco.2020.100566.

Kasyap SS, Li S, Senetakis K. Investigation of the mechanical properties and the influence of microstructural characteristics of aggregates using micro-indentation and Weibull analysis. Constr Build Mater. 2021; 271: 121509. doi: 10.1016/j.conbuildmat.2020.121509.

Hashim MY, Amin AM, Marwah OMF, Othman MH, Hanizan NH, Norman MKE. Two parameters Weibull analysis on mechanical properties of kenaf fiber under various conditions of alkali treatment. Int J Integr Eng. 2020; 12 (3): 245–252.

Naresh K, Shankar K, Velmurugan R. Reliability analysis of tensile strengths using Weibull distribution in glass/epoxy and carbon/epoxy composites. Compos B Eng. 2018; 133: 129–144. doi: 10.1016/j.compositesb.2017.09.002.

Foray G, Descamps-Mandine A, R’Mili M, Lamon J. Statistical flaw strength distributions for glass fibres: correlation between bundle test and AFM-derived flaw size density functions. Acta Mater. 2012; 60 (9): 3711–3718. doi: 10.1016/j.actamat.2012.03.019.




DOI: https://doi.org/10.37591/nanotrends.v25i1.1390

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Nano Trends-A Journal of Nano Technology & Its Applications