Open Access Open Access  Restricted Access Subscription or Fee Access

Nanosensors with Special Reference to Biomedical Application

Karishma Rajput, Anjali Banger, Anamika Srivastava, Anjali Yadav, Manish Srivastava

Abstract


Over the past few years, there has been an increasing interest in the field of nanoscale in various biomedical applications such as cancer diagnosis, drug discovery, detection of viruses and bacteria, blood glucose detection, and more. The development of nanosensors is one of the most recent time advances in nanotechnology. With the help of exclusive properties of nanomaterials, sensitive and fast nanosensors can be developed which will revolutionize the future of disease diagnosis. The aim of this review is to deal with the basic concept, classification, applications, and structure and fabrication of nanosensors w.r.t its recent advancement in detection of various biological diseases, drug discovery, pH sensing, asthma detection, etc. Various types of nanosensors including optical nanosensors, electrochemical nanosensors, electrometers, biosensors, electrochemical nanosensors, and deployable nanosensors have been described briefly.


Keywords


Application, biological nanosensors, chemical nanosensors, electrochemical sensors, nanosensors

Full Text:

PDF

References


Datta SPA. Future healthcare: Bioinformatics, nano-sensors, and emerging innovations.Nanosensors: Theory and Applications in Industry, Healthcare and Defense. 2016; 247.

Liam Critchley. (Jul, 2018). Nanosensor: An introduction. [Online]. Azo Nano.www.azonano.com.

Lu J, Bowles M. How will nanotechnology affect agricultural supply chains? Int Food Agribusiness Manag. Rev. 2013; 16: 21–42.

Colombo M, Ronchi S, Monti D, Corsi F, Trabucchi E, Prosperi D. Femtomolar detection of autoantibodies by magnetic relaxation nanosensors. Anal Biochem. 2009; 392(1): 96–102.

Abdel-Karim R, Reda Y, Abdel-Fattah A. Nanostructured materials-based nanosensors. J Electrochem Soc. 2020; 167(3): 037554.

Kurbanoglu S, Bakirhan NK, Shah A, Ozkan SA. Chemical nanosensors in pharmaceutical analysis. In New Developments in Nanosensors for Pharmaceutical Analysis. Academic Press; 2019; 141–170.

Agrawal S, Prajapati R. Nanosensors and their pharmaceutical applications: a review. Int J Pharm Sci Technol. 2012; 4(4): 1528–1535.

Saylan Y, Denizli A. Virus detection using nanosensors. In Nanosensors for Smart Cities. Elsevier; 2020; 501–511.

Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003; 17(5): 545–580.

Zhang C, Jugold M, Woenne EC, Lammers T, Morgenstern B, Mueller MM, Zentgraf H, Bock M, Eisenhut M, Semmler W, Kiessling F. Specific targeting of tumor angiogenesis by RGDconjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic

resonance scanner. Cancer Res. 2007; 67(4): 1555–1562.

Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004; 22(8): 969–976.

Howarth M, Takao K, Hayashi Y, Ting AY. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci. 2005; 102(21): 7583–7588.

Shi H, Kwok RT, Liu J, Xing B, Tang BZ, Liu B. Real-time monitoring of cell apoptosis and drug screening using fluorescent light-up probe with aggregation-induced emission characteristics. J

Am Chem Soc. 2012; 134(43): 17972–17981.

Wang H, Zhang Q, Chu X, Chen T, Ge J, Yu R. Graphene oxide–peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells. Angew Chem Int Edn. 2011; 50(31): 7065–7069.

Desai HV, Voruganti IS, Jayasuriya C, Chen Q, Darling EM. Live-cell, temporal gene expression analysis of osteogenic differentiation in adipose-derived stem cells. Tissue Eng Part A. 2014; 20(5–6): 899–907.

Sharma P, Bengtsson NE, Walter GA, Sohn HB, Zhou G, Iwakuma N, Zeng H, Grobmyer SR, Scott EW, Moudgil BM. Gadolinium-doped silica nanoparticles encapsulating indocyanine green for near infrared and magnetic resonance imaging. Small. 2012; 8(18): 2856–2868.

Behnke T, Würth C, Hoffmann K, Hübner M, Panne U, Resch-Genger U. Encapsulation of hydrophobic dyes in polystyrene micro-and nanoparticles via swelling procedures. J Fluoresc. 2011; 21(3): 937–944.

Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K. In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett. 2006; 6(10): 2225–2231.

Jones SW, Roberts RA, Robbins GR, Perry JL, Kai MP, Chen K, Bo T, Napier ME, Ting JP, DeSimone JM, Bear JE. Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. J Clin Investig. 2013; 123(7): 3061–3073.

Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, Van Gelderen P, Moskowitz BM, Duncan ID. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol. 2001; 19(12): 1141–1147.

Bulte JW, Duncan ID, Frank JA. In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J Cereb Blood Flow Metab. 2002; 22(8): 899–907.

Chan KW, Liu G, Song X, Kim H, Yu T, Arifin DR, Gilad AA, Hanes J, Walczak P, van Zijl P, Bulte JW. MRI-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability. Nat Mater. 2013; 12(3): 268–275.

Xia Z, Xing Y, Jeon J, Kim YP, Gall J, Dragulescu-Andrasi A, Gambhir SS, Rao J. Immobilizing reporters for molecular imaging of the extracellular microenvironment in living animals. ACS Chem Biol. 2011; 6(10): 1117–1126.

Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS. Noninvasive imaging of quantum dots in mice. Bioconjug Chem. 2004; 15(1): 79–86.

Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol. 2005; 23(11): 1418–1423.

Xu S, Luo Y, Graeser R, Warnecke A, Kratz F, Hauff P, Licha K, Haag R. Development of pHresponsive core–shell nanocarriers for delivery of therapeutic and diagnostic agents. Bioorg Med Chem Lett. 2009; 19(3): 1030–1034.

Itaka K, Chung UI, Kataoka K. Supramolecular nanocarrier for gene and siRNA delivery. Nihon rinsho. Jpn J Clin Med. 2006; 64(2): 253–257.

White RR, Sullenger BA, Rusconi CP. Developing aptamers into therapeutics. J Clin Investig. 2000; 106(8): 929–934.

Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. J Drug Target. 2008; 16(2): 108–123.

Park TG, Jeong JH, Kim SW. Current status of polymeric gene delivery systems. Adv Drug Deliv Rev. 2006; 58(4): 467–486.

Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010; 9(8): 615–627.

Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2006; 58(14): 1532–1555.

Lehner R, Wang X, Marsch S, Hunziker P. Intelligent nanomaterials for medicine: carrier platforms and targeting strategies in the context of clinical application. Nanomed: Nanotechnol Biol Med. 2013; 9(6): 742–757.

Colombo M, Ronchi S, Monti D, Corsi F, Trabucchi E, Prosperi D. Femtomolar detection of autoantibodies by magnetic relaxation nanosensors. Anal Biochem. 2009; 392(1): 96–102.

Devreese JT. Importance of nanosensors: Feynman's vision and the birth of nanotechnology. MRS Bull. 2007; 32(9): 718–725.

Yonzon CR, Stuart DA, Zhang X, McFarland AD, Haynes CL, Van Duyne RP. Towards advanced chemical and biological nanosensors: An overview. Talanta. 2005; 67(3): 438–448.

Nosheen E, Shah A, Iftikhar FJ, Aftab S, Bakirhan NK, Ozkan SA. Optical nanosensors for pharmaceutical detection. In New Developments in Nanosensors for Pharmaceutical Analysis. Academic Press; 2019; 119–140.

Fehr M, Frommer WB, Lalonde S. Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proc Natl Acad Sci. 2002; 99(15): 9846–9851.

Kim YP, Daniel WL, Xia Z, Xie H, Mirkin CA, Rao J. Bioluminescent nanosensors for protease detection based upon gold nanoparticle–luciferase conjugates. Chem Commun. 2010; 46(1): 76– 78.

Stetter JR, Penrose WR, Yao S. Sensors, chemical sensors, electrochemical sensors, and ECS. J Electrochem Soc. 2003; 150(2): S11–S16.

Judith Rishpon, Virginia Buchner. Electrochemical antibody-based sensors. Compr Anal Chem. 2005; 44: 329–373.

Hierold C, Jungen A, Stampfer C, Helbling T. Nano electromechanical sensors based on carbon nanotubes. Sensors and Actuators A: Physcal. 2007; 136(1): 51–61.

Ozkan SA, Shah A, editors. New developments in nanosensors for pharmaceutical analysis. Academic Press; 2019.

Arnold MA, Meyerhoff ME. Recent advances in the development and analytical applications of biosensing probes. Crit Rev Anal Chem. 1988; 20(3): 149–196.

Belkin S. Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol. 2003; 6(3): 206–212.

Malik P, Katyal V, Malik V, Asatkar A, Inwati G, Mukherjee TK. Nanobiosensors: Concepts and variations. Int Sch Res Notices. 2013; p. 9.

Abdel-Karim R, Reda Y, Abdel-Fattah A. Nanostructured materials-based nanosensors. J Electrochem Soc. 2020; 167(3): 037554.

Yonzon CR, Stuart DA, Zhang X, McFarland AD, Haynes CL, Van Duyne RP. Towards advanced chemical and biological nanosensors: An overview. Talanta. 2005; 67(3): 438–448.

Arole VM, Munde SV. Fabrication of nanomaterials by top-down and bottom-up approaches-an overview. J Mater Sci. 2014; 1(2): 89 93.

Kalyani VL, Kumawat P. Recent Advancement in Nanosensors with Special Reference to Biomedical Applications. Journal of Management Engineering and Information Technology (JMEIT). 2020; 7(3): 6p.

Han B, Tomer V, Nguyen TA, Farmani A, Singh PK, editors. Nanosensors for Smart Cities. Elsevier; 2020.

Afsahi S, Lerner MB, Goldstein JM, Lee J, Tang X, Bagarozzi Jr DA, Pan D, Locascio L, Walker A, Barron F, Goldsmith BR. Novel graphene-based biosensor for early detection of Zika virus infection. Biosens Bioelectron. 2018; 100: 85–88.

Kaushik A, Yndart A, Kumar S, Jayant RD, Vashist A, Brown AN, Li CZ, Nair M. A sensitive electrochemical immunosensor for label-free detection of Zika-virus protein. Sci Rep. 2018; 8(1): 1–5.

Babamiri B, Salimi A, Hallaj R. A molecularly imprinted electrochemiluminescence sensor for ultrasensitive HIV-1 gene detection using EuS nanocrystals as luminophore. Biosens Bioelectron.2018; 117: 332–339.

Shafiee H, Lidstone EA, Jahangir M, Inci F, Hanhauser E, Henrich TJ, Kuritzkes DR, Cunningham BT, Demirci U. Nanostructured optical photonic crystal biosensor for HIV viral load measurement. Sci Rep. 2014; 4(1): 1–7.

Ilkhani H, Farhad S. A novel electrochemical DNA biosensor for Ebola virus detection. Anal Biochem. 2018; 557: 151–155.

Yanik AA, Huang M, Kamohara O, Artar A, Geisbert TW, Connor JH, Altug H. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett. 2010; 10(12): 4962–4969.

Hassen WM, Chaix C, Abdelghani A, Bessueille F, Leonard D, Jaffezic-Renault N. An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection. Sens Actuators B: Chem 2008; 134(2):755–760.

Bedford S. Cervical cancer: Physiology, risk factors, vaccination and treatment. Br J Nurs. 2009; 18(2): 80–84.

Inan H, Wang S, Inci F, Baday M, Zangar R, Kesiraju S, Anderson KS, Cunningham BT, Demirci U. Isolation, detection, and quantification of cancer biomarkers in HPV-associated malignancies. Sci Rep. 2017; 7(1): 1–11.

Peng X, Zhang Y, Lu D, Guo Y, Guo S. Ultrathin Ti3C2 nanosheets based “off-on” fluorescent nanoprobe for rapid and sensitive detection of HPV infection. Sens Actuators B: Chem. 2019; 286: 222–229.

Tam PD, Van Hieu N, Chien ND, Le AT, Tuan MA. DNA sensor development based on multiwall carbon nanotubes for label-free influenza virus (type A) detection. J Immunol Methods. 2009; 350(1–2): 118–124.

Vollmer F, Arnold S, Keng D. Single virus detection from the reactive shift of a whispering- gallery mode. Proc Natl Acad Sci. 2008; 105(52): 20701–20704.

Bai H, Wang R, Hargis B, Lu H, Li Y. A SPR aptasensor for detection of avian influenza virus H5N1. Sensors. 2012; 12(9): 12506–12518.

Alireza E, Zahra M, Aydin B, Sedigheh K, Younes G. Iron-reducing bacteria and iron nanostructures. J Adv Med Sci Appl Technol. 2017; 3(1): 9–16.

Mousavi SM, Hashemi SA, Zarei M, Amani AM, Babapoor A. Nanosensors for chemical and biological and medical applications. Med Chem (Los Angeles). 2018; 8(8): 205–217.

Bozal-Palabiyik B, Uslu B, Marrazza G. Nanosensors in biomarker detection. In New Developments in Nanosensors for Pharmaceutical Analysis. Academic Press; 2019. pp. 327–380.

Salvati E, Stellacci F, Krol S. Nanosensors for early cancer detection and for therapeutic drug monitoring. Nanomedicine. 2015; 10(23): 3495–3512.

Khoury LR, Goldbart R, Traitel T, Enden G, Kost J. Harvesting low molecular weight biomarkers using gold nanoparticles. ACS Nano. 2015; 9(6): 5750–5759.

Shiddiky MJ, Rauf S, Kithva PH, Trau M. Graphene/quantum dot bionanoconjugates as signal amplifiers in stripping voltammetric detection of EpCAM biomarkers. Biosens Bioelectron. 2012; 35(1): 251–257.

Wu H, Huo Q, Varnum S, Wang J, Liu G, Nie Z, Liu J, Lin Y. Dye-doped silica nanoparticle labels/protein microarray for detection of protein biomarkers. Analyst. 2008; 133(11): 1550–1555.

Yang P, Li X, Wang L, Wu Q, Chen Z, Lin X. Sandwich-type amperometric immunosensor for cancer biomarker based on signal amplification strategy of multiple enzyme-linked antibodies as

probes modified with carbon nanotubes and concanavalin A. J Electroanal Chem. 2014; 732: 38–45.

Kosaka PM, Pini V, Ruz JJ, Da Silva RA, González MU, Ramos D, Calleja M, Tamayo J. Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor. Nat Nanotechnol. 2014; 9(12): 1047–1053.

Meng L, Gan N, Li T, Cao Y, Hu F, Zheng L. A three-dimensional, magnetic and electroactive nanoprobe for amperometric determination of tumor biomarkers. Int J Mol Sci. 2011; 12(1): 362–375.

Wu X, Luo L, Yang S, Ma X, Li Y, Dong C, Tian Y, Zhang LE, Shen Z, Wu A. Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood. ACS Appl Mater Interfaces. 2015; 7(18): 9965–9971.

Rana S, Singla AK, Bajaj A, Elci SG, Miranda OR, Mout R, Yan B, Jirik FR, Rotello VM. Arraybased sensing of metastatic cells and tissues using nanoparticle–fluorescent protein conjugates. ACS nano. 2012; 6(9): 8233–8240.

Chandra P, Noh HB, Pallela R, Shim YB. Ultrasensitive detection of drug resistant cancer cells in biological matrixes using an amperometric nanobiosensor. Biosens Bioelectron. 2015; 70: 418–425.

Halo TL, McMahon KM, Angeloni NL, Xu Y, Wang W, Chinen AB, Malin D, Strekalova E, Cryns VL, Cheng C, Mirkin CA. NanoFlares for the detection, isolation, and culture of live tumor cells from human blood. Proc Natl Acad Sci. 2014; 111(48): 17104–17109.

Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Zeinali M, Hamza B, Engstrom A, Zhu H, Sundaresan TK, Miyamoto DT, Luo X. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods. 2015; 12(7): 685–691.

Ganau M, Bosco A, Palma A, Corvaglia S, Parisse P, Fruk L, Beltrami AP, Cesselli D, Casalis L, Scoles G. A DNA-based nano-immunoassay for the label-free detection of glial fibrillary acidic protein in multicell lysates. Nanomed: Nanotechnol Biol Med. 2015; 11(2): 293–300.

Shao H, Chung J, Lee K, Balaj L, Min C, Carter BS, Hochberg FH, Breakefield XO, Lee H, Weissleder R. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun. 2015; 6(1): 1–9.

Ravanshad R, Karimi Zadeh A, Amani AM, Mousavi SM, Hashemi SA, Savar Dashtaki A, Mirzaei E, Zare B. Application of nanoparticles in cancer detection by Raman scattering based techniques. Nano Reviews & Experiments. 2018; 9(1): 1373551.

Kiefer J. Recent advances in the characterization of gaseous and liquid fuels by vibrational spectroscopy. Energies. 2015; 8(4): 3165–3197.

84 Hashemi SA, Mousavi SM, Faghihi R, Arjmand M, Sina S, Amani AM. Lead oxide-decorated graphene oxide/epoxy composite towards X-Ray radiation shielding. Radiat Phys Chem. 2018; 146: 77–85.

Pickup JC, Hussain F, Evans ND, Sachedina N. In vivo glucose monitoring: the clinical reality and the promise. Biosens Bioelectron. 2005; 20(10): 1897–1902.

Cavalcanti A, Shirinzadeh B, Kretly LC. Medical nanorobotics for diabetes control. Nanomed: Nanotechnol Biol Med. 2008; 4(2): 127–138.

Narayan RJ. Pulsed laser deposition of functionally gradient diamondlike carbon–metal nanocomposites. Diam Relat Mater. 2005; 14(8): 1319–1330.

Hogg T, Freitas Jr RA. Acoustic communication for medical nanorobots. Nano Commun Netw.2012; 3(2): 83–102.

Freitas RA. Nanotechnology, nanomedicine and nanosurgery. Int J Surg. 2005; 4(3): 243–246.

Musa G, Mustata I, Ciupina V, Vladoiu R, Prodan G, Vasile E, Ehrich H. Diamond-like nanostructured carbon film deposition using thermionic vacuum arc. Diam Relat Mater. 2004; 13(4–8): 1398–1401.

Gannon CJ, Cherukuri P, Yakobson BI, Cognet L, Kanzius JS, Kittrell C, Weisman RB, Pasquali M, Schmidt HK, Smalley RE, Curley SA. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer: Interdisciplinary

International Journal of the American Cancer Society. 2007; 110(12): 2654–2665.

Rutherglen C, Burke P. Carbon nanotube radio. Nano Lett. 2007; 7(11): 3296–3299.

Ricciardi L, Pitz I, Al-Sarawi SF, Varadan V, Abbott D. Investigation into the future of RFID in biomedical applications. In Bioengineered and Bioinspired systems, SPIE. 2003 Apr; 5119: 199–209.

Kempi I, Ahmed N, Hammer A, Olabode O, Unnikrishnan V, Kosunen M, Ryynänen J. Resilient flow control for wireless data streaming in inductively coupled medical implants. Microprocess Microsyst. 2020; 72: 102905.

Cavalcanti A, Shirinzadeh B, Kretly LC. Medical nanorobotics for diabetes control. Nanomed: Nanotechnol Biol Med. 2008; 4(2): 127–138.

Cavalcanti A, Shirinzadeh B, Zhang M, Kretly LC. Nanorobot hardware architecture for medical defense. Sensors. 2008; 8(5): 2932–2958.

Del Villar I, Matías IR, Arregui FJ, Claus RO. ESA-based in-fiber nanocavity for hydrogenperoxide detection. IEEE Trans Nanotechnol. 2005; 4(2): 187–193.

Goicoechea J, Zamarreño CR, Matias IR, Arregui FJ. Minimizing the photobleaching of selfassembled multilayers for sensor applications. Sens Actuators B: Chem. 2007; 126(1): 41–47.

Rai M, Gade A, Gaikwad S, Marcato PD, Durán N. Biomedical applications of nanobiosensors: the state-of-the-art. J Braz Chem Soc. 2012; 23(1): 14–24.

Cash KJ, Clark HA. Nanosensors and Nanomaterials for monitoring glucose in diabetes. Trends Mol Med. 2010 Dec; 16(12): 584–593.

Al-Sofiani M, Abou-Samra AB, Mousa SA. Vitamin D, Parathyroid Hormone, and Parathyroid Hormone-Related Peptide Interaction in Diabetes Mellitus.

Rutherglen C, Burke P. Carbon nanotube radio. Nano Lett. 2007; 7(11): 3296–3299.

103 Fritz J, Cooper EB, Gaudet S, Sorger PK, Manalis SR. Electronic detection of DNA by its intrinsic molecular charge. Proc Natl Acad Sci. 2002; 99(22): 14142–14146.

Patolsky F, Zheng G, Lieber CM. Nanowire sensors for medicine and the life sciences. Nanomedicine. 2006; 1(1): 51–65.

Schrittwieser S, Pelaz B, Parak WJ, Lentijo-Mozo S, Soulantica K, Dieckhoff J, Ludwig F, Guenther A, Tschöpe A, Schotter J. Homogeneous biosensing based on magnetic particle labels. Sensors. 2016; 16(6): 828.

Brockman JM, Nelson BP, Corn RM. Surface plasmon resonance imaging measurements of ultrathin organic films. Ann Rev Phys Chem. 2000; 51(1): 41–63.

Huang C, Bonroy K, Reekman G, Verstreken K, Lagae L, Borghs G. An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen–antibody reaction. Microelectron Eng. 2009; 86(12): 2437–2441.

Riboh JC, Haes AJ, McFarland AD, Ranjit Yonzon C, Van Duyne RP. A nanoscale optical biosensor: real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion. J Phys Chem B. 2003; 107(8): 1772–1780.

Haes AJ, Van Duyne RP. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc. 2002; 124(35): 10596–10604.

Kim HM, Jin SM, Lee SK, Kim MG, Shin YB. Detection of biomolecular binding through enhancement of localized surface plasmon resonance (LSPR) by gold nanoparticles. Sensors. 2009; 9(4): 2334–2344.

Tallury P, Malhotra A, Byrne LM, Santra S. Nanobioimaging and sensing of infectious diseases. Adv Drug Deliv Rev. 2010; 62(4–5): 424–437.

Pasinszki T, Krebsz M, Tung TT, Losic D. Carbon nanomaterial based biosensors for noninvasive detection of cancer and disease biomarkers for clinical diagnosis. Sensors. 2017; 17(8): 1919.

Placzek MR, Chung IM, Macedo HM, Ismail S, Mortera Blanco T, Lim M, Min Cha J, Fauzi I, Kang Y, Yeo DC, Yip Joan Ma C. Stem cell bioprocessing: fundamentals and principles. J R Soc Interface. 2009; 6(32): 209–232.

Yeo D, Kiparissides A, Cha JM, Aguilar-Gallardo C, Polak JM, Tsiridis E, Pistikopoulos EN, Mantalaris A. Improving embryonic stem cell expansion through the combination of perfusion and bioprocess model design. PLoS One. 2013; 8(12): e81728.

Zhang ZY, Teoh SH, Chong WS, Foo TT, Chng YC, Choolani M, Chan J. A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials. 2009; 30(14): 2694–2704.

Dang TT, Bratlie KM, Bogatyrev SR, Chen XY, Langer R, Anderson DG. Spatiotemporal effects of a controlled-release anti-inflammatory drug on the cellular dynamics of host response. Biomaterials. 2011; 32(19): 4464–4470.

Yeo DC, Wiraja C, Mantalaris AS, Xu C. Nanosensors for regenerative medicine. J Biomed Nanotech. 2014; 10(10): 2722–2746.

Schellenberger E. Bioresponsive nanosensors in medical imaging. J R Soc. Interface. 2010; 7(suppl_1): S83–S91.

Akyildiz IF, Jornet JM. Electromagnetic wireless nanosensor networks. Nano Commun Netw. 2010; 1(1): 3–19.

Zakeri A, Kouhbanani MAJ, Beheshtkhoo N, Beigi V, Mousavi SM, Hashemi SAR, Karimi Zade A, Amani AM, Savardashtaki A, Mirzaei E, Jahandideh S. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. Nano Rev Exp. 2018; 9(1):

Mousavi SM, Hashemi SA, Jahandideh S, Baseri S, Zarei M, Azadi S. Modification of phenol novolac epoxy resin and unsaturated polyester using sasobit and silica nanoparticles. Polym Renew Resour. 2017; 8(3): 117–132.

Mousavi SM, Arjmand O, Hashemi SA, Banaei N. Modification of the epoxy resin mechanical and thermal properties with silicon acrylate and montmorillonite nanoparticles. Polym Renew Resour. 2016; 7(3): 101–113.

Amani AM, Hashemi SA, Mousavi SM, Abrishamifar SM, Vojood A. Electric field induced alignment of carbon nanotubes: methodology and outcomes. IntechOpen; 2017.

Hashemi SA, Mousavi SM. Effect of bubble based degradation on the physical properties of Single Wall Carbon Nanotube/Epoxy Resin composite and new approach in bubbles reduction. Compos Part A: Appl Sci Manuf. 2016; 90: 457–469.

Mousavi SM, Hashemi SA, Amani AM, Saed H, Jahandideh S, Mojoudi F. Polyethylene terephthalate/acryl butadiene styrene copolymer incorporated with oak shell, potassium sorbate and egg shell nanoparticles for food packaging applications: control of bacteria growth, physical and mechanical properties. Polym Renew Resour. 2017; 8(4): 177–196.

Seyed MM. Unsaturated polyester resins modified with cresol novolac epoxy and silica nanoparticles: processing and mechanical properties. International Journal of Chemical and Petroleum Sciences (IJCPS). 2016; 5(1): 13–26.

Mousavi SM, Aghili A, Hashemi SA, Goudarzian N, Bakhoda Z, Baseri S. Improved morphology and properties of nanocomposites, linear low density polyethylene, ethylene-co- vinyl acetate and nano clay particles by electron beam. Polym Renew Resour. 2016; 7(4): 135–153.

Akbarian M, Ghasemi Y, Uversky VN, Yousefi R. Chemical modifications of insulin: Finding a compromise between stability and pharmaceutical performance. Int J Pharm. 2018; 547(1–2): 450–468.

Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989; 49(16): 4373–4384.

Hashim AI, Zhang X, Wojtkowiak JW, Martinez GV, Gillies RJ. Imaging pH and metastasis. NMR Biomed. 2011 Jul; 24(6): 582–591.

Liu Y, Yuan H, Fales AM, Vo-Dinh T. pH-sensing nanostar probe using surface-enhanced Raman scattering (SERS): Theoretical and experimental studies. J Raman Spectrosc. 2013; 44(7): 980–986.

Vo-Dinh T, Liu Y, Fales AM, Ngo H, Wang HN, Register JK, Yuan H, Norton SJ, Griffin GD. SERS nanosensors and nanoreporters: golden opportunities in biomedical applications. Wiley Interdiscip Rev: Nanomed Nanobiotechnol. 2015; 7(1): 17–33.

Butt Z, Aziz MS, Aamir M, Syed AS, Akhtar J. Next-generation self-powered nanosensors. In Nanosensors for Smart Manufacturing. Elsevier; 2021; 487–515.

Kneipp J, Kneipp H, Wittig B, Kneipp K. Novel optical nanosensors for probing and imaging live cells. Nanomed: Nanotechnol Biol Med. 2010; 6(2): 214–226.

Fehr M, Okumoto S, Deuschle K, Lager I, Looger LL, Persson J, Kozhukh L, Lalonde S, Frommer WB. Development and use of fluorescent nanosensors for metabolite imaging in living cells. Biochem Soc Trans. 2005 Feb; 33(Pt 1): 287–290.

Cullum BM, Vo-Dinh T. The development of optical nanosensors for biological measurements. Trends Biotechnol. 2000; 18(9): 388–393.

Kalyani VL, Kumawat P. Recent Advancement in Nanosensors with Special Reference to Biomedical Applications. Journal of Management Engineering and Information Technology (JMEIT). 2020 Jun; 7(3): 24–30.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Nano Trends-A Journal of Nano Technology & Its Applications