A Novel Technique of Infrared Thermography for Ambient Air Infiltration Detection in Air- Conditioned Space
Abstract
Keywords
Full Text:
PDFReferences
International Energy Agency: https://www.iea.org/fuels-and- technologies/cooling
International Energy Agency (IEA): Cooling: Tracking progress 2020. (2021)
Costa, A., Keane, M.M., Torrens, J.I., Corry, E.: Building operation and energy performance: Monitoring, analysis and optimisation
toolkit. Appl. Energy. 101, 310–316 (2013). https://doi.org/10.1016/j.apenergy.2011.10.037
Chua, K.J., Chou, S.K., Yang, W.M., Yan, J.: Achieving better energy-efficient air conditioning - A review of technologies and strategies. Appl. Energy. 104, 87–104 (2013).
https://doi.org/10.1016/j.apenergy.2012.10.037
Goetzler, W., Guernsey, M., Young, J., Fuhrman, J., Abdelaziz, O.: The Future of Air Conditioning for Buildings. Dep. Energy Off.
Energy Effic. Renew. Energy Build. Technol. Off. 94 (2016)Y.Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy studies on magneto-optical media and plastic substrate interface,”IEEE Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982].
Zhang, N., Wang, H., Gallagher, J., Song, Q., Tam, V.W.Y., Duan, H.: A dynamic analysis of the global warming potential associated
with air conditioning at a city scale: an empirical study in Shenzhen, China. Environ. Impact Assess. Rev. 81, 106354 (2020).
https://doi.org/10.1016/j.eiar.2019.106354
Wan, H., Cao, T., Hwang, Y., Radermacher, R., Andersen, S.O., Chin, S.: A comprehensive review of life cycle climate performance
(LCCP) for air conditioning systems. Int. J. Refrig. 130, 187–198 (2021). https://doi.org/10.1016/j.ijrefrig.2021.06.026
Ng, K.C., Shahzad, M.W., Burhan, M., Oh, S.J.: Approaches to energy efficiency in air conditioning: Innovative processes and
thermodynamics. Energy Procedia. 158, 1455–1460 (2019).https://doi.org/10.1016/j.egypro.2019.01.349
Biardeau, L.T., Davis, L.W., Gertler, P., Wolfram, C.: Heat exposure and global air conditioning. Nat. Sustain. 3, 25–28 (2020).
https://doi.org/10.1038/s41893-019-0441-9
International Energy Agency (IEA): The Future of Cooling Opportunities for energy- efficient air conditioning. (2018)
Ministry of Environment Forest & Climate Change Government of India: India Cooling Action Plan. (2019)
https://www.cleancoolingcollaborative.org/.
Wang, Y., Zhao, F.Y., Kuckelkorn, J., Liu, D., Liu, L.Q., Pan, X.C.: Cooling energy efficiency and classroom air environment of a school
building operated by the heat recovery air conditioning unit. Energy.64, 991–1001 (2014). https://doi.org/10.1016/j.energy.2013.11.066
Tang, R., Wang, S., Shan, K., Cheung, H.: Optimal control strategy of central air-conditioning systems of buildings at morning start period for enhanced energy efficiency and peak demand limiting. Energy.151, 771–781 (2018). https://doi.org/10.1016/j.energy.2018.03.032
Lv, W., Shen, C., Li, X.: Energy efficiency of an air conditioning system coupled with a pipe-embedded wall and mechanical ventilation. J. Build. Eng. 15, 229–235 (2018). https://doi.org/10.1016/j.jobe.2017.11.010
Xu, X., Deng, S., Chan, M.: A new control algorithm for direct expansion air conditioning systems for improved indoor humidity control and energy efficiency. Energy Convers. Manag. 49, 578–586 (2008). https://doi.org/10.1016/j.enconman.2007.07.040
I. S. Jacobs and C. P. Bean, “Fine particles, thin films and exchange anisotropy,” in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271–350.
Lahiri, B.B., Bagavathiappan, S., Jayakumar, T., Philip, J.: Medical applications of infrared thermography: A review. Infrared Phys.
Technol. 55, 221–235 (2012). https://doi.org/10.1016/j.infrared.2012.03.007
M.F. Modest: Radiative Heat Transfer. Acad. Press. Calif. (2003)
Casas-Alvarado, A., Mota-Rojas, D., Hernández-Ávalos, I., Mora- Medina, P., Olmos-Hernández, A., Verduzco-Mendoza, A., Reyes-Sotelo, B., Martínez-Burnes, J.: Advances in infrared thermography:Surgical aspects, vascular changes, and pain monitoring in veterinary medicine. J. Therm. Biol. 92, (2020). https://doi.org/10.1016/j.jtherbio.2020.102664
Chelladurai, V., Jayas, D.S., White, N.D.G.: Thermal imaging for detecting fungal infection in stored wheat. J. Stored Prod. Res. 46, 174–179 (2010). https://doi.org/10.1016/j.jspr.2010.04.002
Ahmed, A., Ibrahim, A., Hussein, S.: Detection of palm tree pests using thermal imaging: A review. Springer International Publishing
(2019)
Roopaei, M., Rad, P., Choo, K.K.R.: Cloud of things in smart agriculture: Intelligent irrigation monitoring by thermal imaging. IEEE Cloud Comput. 4, 10–15 (2017).
https://doi.org/10.1109/MCC.2017.5
J. Miguel Costa, O.M. Grant, and M.M.C.: Use of Thermal Imaging in Viticulture: Current Application and Future Prospects. In: Methodologies and Results in Grapevine Research. pp. 1–448 (2010)
Sagan, V., Maimaitijiang, M., Sidike, P., Eblimit, K., Peterson, K.T., Hartling, S., Esposito, F., Khanal, K., Newcomb, M., Pauli, D., Ward,
R., Fritschi, F., Shakoor, N., Mockler, T.: UAV-based high resolution thermal imaging for vegetation monitoring, and plant phenotyping
using ICI 8640 P, FLIR Vue Pro R 640, and thermomap cameras. Remote Sens. 11, (2019). https://doi.org/10.3390/rs11030330
Kodikara, J., Rajeev, P., Rhoden, N.J.: Determination of thermal diffusivity of soil using infrared thermal imaging. Can. Geotech. J. 48, 1295–1302 (2011). https://doi.org/10.1139/t11-036
Gade, R., Jørgensen, A., Moeslund, T.B.: Occupancy analysis of sports arenas using thermal imaging. VISAPP 2012 - Proc. Int. Conf.
Comput. Vis. Theory Appl. 2, 277–283 (2012).https://doi.org/10.5220/0003843202770283
Kim, J.H., Lattimer, B.Y.: Real-time probabilistic classification of fire and smoke using thermal imagery for intelligent firefighting robot. Fire Saf. J. 72, 40–49 (2015).
https://doi.org/10.1016/j.firesaf.2015.02.007
Barreira, E., de Freitas, V.P.: Evaluation of building materials using infrared thermography. Constr. Build. Mater. 21, 218–224 (2007).
https://doi.org/10.1016/j.conbuildmat.2005.06.049
Dahaghin, M., Samadzadegan, F., Dadrass Javan, F.: Precise 3D extraction of building roofs by fusion of UAV-based thermal and visible images. Int. J. Remote Sens. 42, 7002–7030 (2021). https://doi.org/10.1080/01431161.2021.1951875
Brooke, C.: Thermal imaging for the archaeological investigation of historic buildings. Remote Sens. 10, (2018). https://doi.org/10.3390/rs10091401
Glowacz, A., Glowacz, Z.: Diagnosis of the three-phase induction motor using thermal imaging. Infrared Phys. Technol. 81, 7–16 (2017). https://doi.org/10.1016/j.infrared.2016.12.003
Glowacz, A.: Fault diagnosis of electric impact drills using thermal imaging. Meas. J. Int. Meas. Confed. 171, 108815 (2021). https://doi.org/10.1016/j.measurement.2020.108815
Andoga, R., Fozo, L., Schrötter, M., Češkovič, M., Szabo, S., Bréda, R., Schreiner, M.: Intelligent thermal imaging-based diagnostics of
turbojet engines. Appl. Sci. 9, (2019). https://doi.org/10.3390/app9112253
Maio, L., Liberini, M., Campanella, D., Astarita, A., Esposito, S.,Boccardi, S., Meola, C.: Infrared thermography for monitoring heat
generation in a linear friction welding process of Ti6Al4V alloy. Infrared Phys. Technol. 81, 325–338 (2017).https://doi.org/10.1016/j.infrared.2017.01.023
Lucchi, E.: Applications of the infrared thermography in the energy audit of buildings: A review. Renew. Sustain. Energy Rev. 82, 3077–
(2018). https://doi.org/10.1016/j.rser.2017.10.031
Barreira, E., Almeida, R.M.S.F., Moreira, M.: An infrared thermography passive approach to assess the effect of leakage points in buildings. Energy Build. 140, 224–235 (2017).
https://doi.org/10.1016/j.enbuild.2017.02.009
RESNET: Interim Guidelines for Thermographic Inspections of Buildings. 31 (2012)
Mahmoodzadeh, M., Gretka, V., Wong, S., Froese, T., Mukhopadhyaya, P.: Evaluating patterns of building envelope air leakage with infrared thermography. Energies. 13, (2020).
https://doi.org/10.3390/en13143545
Garrido, I., Lagüela, S., Otero, R., Arias, P.: Thermographic methodologies used in infrastructure inspection: A review—data acquisition procedures. Infrared Phys. Technol. 111, 103481 (2020). https://doi.org/10.1016/j.infrared.2020.103481
Sabunas, A., Kanapickas, A.: Estimation of climate change impact on energy consumption in a residential building in Kaunas, Lithuania, using HEED Software. Energy Procedia. 128, 92–99 (2017). https://doi.org/10.1016/j.egypro.2017.09.020
Mao, C., Baltazar, J.C., Haberl, J.S.: Literature review of building peak cooling load methods in the United States. Sci. Technol. Built
Environ. 24, 228–237 (2018). https://doi.org/10.1080/23744731.2017.1373700
Ansari, F.A., Mokhtar, A.S., Abbas, K.A., Adam, N.M.: A Simple Approach for Building Cooling Load Estimation. Am. J. Environ. Sci.1, 209–212 (2005). https://doi.org/10.3844/ajessp.2005.209.212
Balaras, C.A., Argiriou, A.A.: Infrared thermography for building diagnostics. Energy Build. 34, 171–183 (2002). https://doi.org/10.1016/S0378-7788(01)00105-0
Avdelidis, N.P., Moropoulou, A.: Emissivity considerations in building thermography. Energy Build. 35, 663–667 (2003). https://doi.org/10.1016/S0378-7788(02)00210-4
Maroy, K., Carbonez, K., Steeman, M., Van Den Bossche, N.: Assessing the thermal performance of insulating glass units with infrared thermography: Potential and limitations. Energy Build. 138, 175–192 (2017). https://doi.org/10.1016/j.enbuild.2016.10.054
Chan, W.R., Nazaroff, W.W., Price, P.N., Sohn, M.D., Gadgil, A.J.: Analyzing a database of residential air leakage in the United States.
Atmos. Environ. 39, 3445–3455 (2005). https://doi.org/10.1016/j.atmosenv.2005.01.062
Chan, W.R., Joh, J., Sherman, M.H.: Analysis of air leakage measurements of US houses. Energy Build. 66, 616–625 (2013). https://doi.org/10.1016/j.enbuild.2013.07.047
Wang, X., Yu, H., Li, L., Zhao, M.: Experimental assessment on the use of phase change materials (PCMs)-bricks in the exterior wall of a
full-scale room. Energy Convers. Manag. 120, 81–89 (2016). https://doi.org/10.1016/j.enconman.2016.04.065
Hart, J., Watford, B.: A practical guide to infra-red thermography for building surveys. (1991)
Kalamees, T.: Air tightness and air leakages of new lightweight single-family detached houses in Estonia. Build. Environ. 42, 2369– 2377 (2007). https://doi.org/10.1016/j.buildenv.2006.06.001
Kulaib, A., Kalendar, A., Shafqat, H., Yousuf, A.: A Parametric Study Of The Energy Efficiency Of Existing Air-Conditioned Buildings In Kuwait. (2021)
DOI: https://doi.org/10.37591/jorachv.v9i3.1380
Refbacks
- There are currently no refbacks.