Open Access Open Access  Restricted Access Subscription or Fee Access

A Novel Technique of Infrared Thermography for Ambient Air Infiltration Detection in Air- Conditioned Space

Piyush Kokate, Mohd Mubashshir Naved, Amrapali Deorao Nimsarkar, Harikumar Naidu

Abstract


Maintaining thermal comfort in the indoor microenvironment is essential for occupants’ well-being and functioning. Heating, ventilation and air conditioning account for a significant share in building energy consumption. Therefore, it is necessary to act on each energy-saving opportunity to improve air conditioners' energy efficiency and reduce outdoor air ingress in cooling space. Many earlier works focused on improving the performance of air conditioners; however, measurement of heat losses through building/room geometry remains a grey area. In this study, an infrared (IR) thermal camera was employed to obtain the IR thermographs of isolated, detached cooling space for finding out the air tightness. The secured thermographs were used for locating the sources of ambient air infiltration in the air- conditioned rooms, helping in air leak identification and early civil redesign work linked to cooling space. The study emphasizes the role of IR thermography in green and efficient buildings operation for cooling energy conservation and can be incorporated as an effective tool in energy audit and management methodology

Keywords


IR thermography, energy conservation, green building, air infiltration, air conditioning

Full Text:

PDF

References


International Energy Agency: https://www.iea.org/fuels-and- technologies/cooling

International Energy Agency (IEA): Cooling: Tracking progress 2020. (2021)

Costa, A., Keane, M.M., Torrens, J.I., Corry, E.: Building operation and energy performance: Monitoring, analysis and optimisation

toolkit. Appl. Energy. 101, 310–316 (2013). https://doi.org/10.1016/j.apenergy.2011.10.037

Chua, K.J., Chou, S.K., Yang, W.M., Yan, J.: Achieving better energy-efficient air conditioning - A review of technologies and strategies. Appl. Energy. 104, 87–104 (2013).

https://doi.org/10.1016/j.apenergy.2012.10.037

Goetzler, W., Guernsey, M., Young, J., Fuhrman, J., Abdelaziz, O.: The Future of Air Conditioning for Buildings. Dep. Energy Off.

Energy Effic. Renew. Energy Build. Technol. Off. 94 (2016)Y.Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy studies on magneto-optical media and plastic substrate interface,”IEEE Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982].

Zhang, N., Wang, H., Gallagher, J., Song, Q., Tam, V.W.Y., Duan, H.: A dynamic analysis of the global warming potential associated

with air conditioning at a city scale: an empirical study in Shenzhen, China. Environ. Impact Assess. Rev. 81, 106354 (2020).

https://doi.org/10.1016/j.eiar.2019.106354

Wan, H., Cao, T., Hwang, Y., Radermacher, R., Andersen, S.O., Chin, S.: A comprehensive review of life cycle climate performance

(LCCP) for air conditioning systems. Int. J. Refrig. 130, 187–198 (2021). https://doi.org/10.1016/j.ijrefrig.2021.06.026

Ng, K.C., Shahzad, M.W., Burhan, M., Oh, S.J.: Approaches to energy efficiency in air conditioning: Innovative processes and

thermodynamics. Energy Procedia. 158, 1455–1460 (2019).https://doi.org/10.1016/j.egypro.2019.01.349

Biardeau, L.T., Davis, L.W., Gertler, P., Wolfram, C.: Heat exposure and global air conditioning. Nat. Sustain. 3, 25–28 (2020).

https://doi.org/10.1038/s41893-019-0441-9

International Energy Agency (IEA): The Future of Cooling Opportunities for energy- efficient air conditioning. (2018)

Ministry of Environment Forest & Climate Change Government of India: India Cooling Action Plan. (2019)

https://www.cleancoolingcollaborative.org/.

Wang, Y., Zhao, F.Y., Kuckelkorn, J., Liu, D., Liu, L.Q., Pan, X.C.: Cooling energy efficiency and classroom air environment of a school

building operated by the heat recovery air conditioning unit. Energy.64, 991–1001 (2014). https://doi.org/10.1016/j.energy.2013.11.066

Tang, R., Wang, S., Shan, K., Cheung, H.: Optimal control strategy of central air-conditioning systems of buildings at morning start period for enhanced energy efficiency and peak demand limiting. Energy.151, 771–781 (2018). https://doi.org/10.1016/j.energy.2018.03.032

Lv, W., Shen, C., Li, X.: Energy efficiency of an air conditioning system coupled with a pipe-embedded wall and mechanical ventilation. J. Build. Eng. 15, 229–235 (2018). https://doi.org/10.1016/j.jobe.2017.11.010

Xu, X., Deng, S., Chan, M.: A new control algorithm for direct expansion air conditioning systems for improved indoor humidity control and energy efficiency. Energy Convers. Manag. 49, 578–586 (2008). https://doi.org/10.1016/j.enconman.2007.07.040

I. S. Jacobs and C. P. Bean, “Fine particles, thin films and exchange anisotropy,” in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271–350.

Lahiri, B.B., Bagavathiappan, S., Jayakumar, T., Philip, J.: Medical applications of infrared thermography: A review. Infrared Phys.

Technol. 55, 221–235 (2012). https://doi.org/10.1016/j.infrared.2012.03.007

M.F. Modest: Radiative Heat Transfer. Acad. Press. Calif. (2003)

Casas-Alvarado, A., Mota-Rojas, D., Hernández-Ávalos, I., Mora- Medina, P., Olmos-Hernández, A., Verduzco-Mendoza, A., Reyes-Sotelo, B., Martínez-Burnes, J.: Advances in infrared thermography:Surgical aspects, vascular changes, and pain monitoring in veterinary medicine. J. Therm. Biol. 92, (2020). https://doi.org/10.1016/j.jtherbio.2020.102664

Chelladurai, V., Jayas, D.S., White, N.D.G.: Thermal imaging for detecting fungal infection in stored wheat. J. Stored Prod. Res. 46, 174–179 (2010). https://doi.org/10.1016/j.jspr.2010.04.002

Ahmed, A., Ibrahim, A., Hussein, S.: Detection of palm tree pests using thermal imaging: A review. Springer International Publishing

(2019)

Roopaei, M., Rad, P., Choo, K.K.R.: Cloud of things in smart agriculture: Intelligent irrigation monitoring by thermal imaging. IEEE Cloud Comput. 4, 10–15 (2017).

https://doi.org/10.1109/MCC.2017.5

J. Miguel Costa, O.M. Grant, and M.M.C.: Use of Thermal Imaging in Viticulture: Current Application and Future Prospects. In: Methodologies and Results in Grapevine Research. pp. 1–448 (2010)

Sagan, V., Maimaitijiang, M., Sidike, P., Eblimit, K., Peterson, K.T., Hartling, S., Esposito, F., Khanal, K., Newcomb, M., Pauli, D., Ward,

R., Fritschi, F., Shakoor, N., Mockler, T.: UAV-based high resolution thermal imaging for vegetation monitoring, and plant phenotyping

using ICI 8640 P, FLIR Vue Pro R 640, and thermomap cameras. Remote Sens. 11, (2019). https://doi.org/10.3390/rs11030330

Kodikara, J., Rajeev, P., Rhoden, N.J.: Determination of thermal diffusivity of soil using infrared thermal imaging. Can. Geotech. J. 48, 1295–1302 (2011). https://doi.org/10.1139/t11-036

Gade, R., Jørgensen, A., Moeslund, T.B.: Occupancy analysis of sports arenas using thermal imaging. VISAPP 2012 - Proc. Int. Conf.

Comput. Vis. Theory Appl. 2, 277–283 (2012).https://doi.org/10.5220/0003843202770283

Kim, J.H., Lattimer, B.Y.: Real-time probabilistic classification of fire and smoke using thermal imagery for intelligent firefighting robot. Fire Saf. J. 72, 40–49 (2015).

https://doi.org/10.1016/j.firesaf.2015.02.007

Barreira, E., de Freitas, V.P.: Evaluation of building materials using infrared thermography. Constr. Build. Mater. 21, 218–224 (2007).

https://doi.org/10.1016/j.conbuildmat.2005.06.049

Dahaghin, M., Samadzadegan, F., Dadrass Javan, F.: Precise 3D extraction of building roofs by fusion of UAV-based thermal and visible images. Int. J. Remote Sens. 42, 7002–7030 (2021). https://doi.org/10.1080/01431161.2021.1951875

Brooke, C.: Thermal imaging for the archaeological investigation of historic buildings. Remote Sens. 10, (2018). https://doi.org/10.3390/rs10091401

Glowacz, A., Glowacz, Z.: Diagnosis of the three-phase induction motor using thermal imaging. Infrared Phys. Technol. 81, 7–16 (2017). https://doi.org/10.1016/j.infrared.2016.12.003

Glowacz, A.: Fault diagnosis of electric impact drills using thermal imaging. Meas. J. Int. Meas. Confed. 171, 108815 (2021). https://doi.org/10.1016/j.measurement.2020.108815

Andoga, R., Fozo, L., Schrötter, M., Češkovič, M., Szabo, S., Bréda, R., Schreiner, M.: Intelligent thermal imaging-based diagnostics of

turbojet engines. Appl. Sci. 9, (2019). https://doi.org/10.3390/app9112253

Maio, L., Liberini, M., Campanella, D., Astarita, A., Esposito, S.,Boccardi, S., Meola, C.: Infrared thermography for monitoring heat

generation in a linear friction welding process of Ti6Al4V alloy. Infrared Phys. Technol. 81, 325–338 (2017).https://doi.org/10.1016/j.infrared.2017.01.023

Lucchi, E.: Applications of the infrared thermography in the energy audit of buildings: A review. Renew. Sustain. Energy Rev. 82, 3077–

(2018). https://doi.org/10.1016/j.rser.2017.10.031

Barreira, E., Almeida, R.M.S.F., Moreira, M.: An infrared thermography passive approach to assess the effect of leakage points in buildings. Energy Build. 140, 224–235 (2017).

https://doi.org/10.1016/j.enbuild.2017.02.009

RESNET: Interim Guidelines for Thermographic Inspections of Buildings. 31 (2012)

Mahmoodzadeh, M., Gretka, V., Wong, S., Froese, T., Mukhopadhyaya, P.: Evaluating patterns of building envelope air leakage with infrared thermography. Energies. 13, (2020).

https://doi.org/10.3390/en13143545

Garrido, I., Lagüela, S., Otero, R., Arias, P.: Thermographic methodologies used in infrastructure inspection: A review—data acquisition procedures. Infrared Phys. Technol. 111, 103481 (2020). https://doi.org/10.1016/j.infrared.2020.103481

Sabunas, A., Kanapickas, A.: Estimation of climate change impact on energy consumption in a residential building in Kaunas, Lithuania, using HEED Software. Energy Procedia. 128, 92–99 (2017). https://doi.org/10.1016/j.egypro.2017.09.020

Mao, C., Baltazar, J.C., Haberl, J.S.: Literature review of building peak cooling load methods in the United States. Sci. Technol. Built

Environ. 24, 228–237 (2018). https://doi.org/10.1080/23744731.2017.1373700

Ansari, F.A., Mokhtar, A.S., Abbas, K.A., Adam, N.M.: A Simple Approach for Building Cooling Load Estimation. Am. J. Environ. Sci.1, 209–212 (2005). https://doi.org/10.3844/ajessp.2005.209.212

Balaras, C.A., Argiriou, A.A.: Infrared thermography for building diagnostics. Energy Build. 34, 171–183 (2002). https://doi.org/10.1016/S0378-7788(01)00105-0

Avdelidis, N.P., Moropoulou, A.: Emissivity considerations in building thermography. Energy Build. 35, 663–667 (2003). https://doi.org/10.1016/S0378-7788(02)00210-4

Maroy, K., Carbonez, K., Steeman, M., Van Den Bossche, N.: Assessing the thermal performance of insulating glass units with infrared thermography: Potential and limitations. Energy Build. 138, 175–192 (2017). https://doi.org/10.1016/j.enbuild.2016.10.054

Chan, W.R., Nazaroff, W.W., Price, P.N., Sohn, M.D., Gadgil, A.J.: Analyzing a database of residential air leakage in the United States.

Atmos. Environ. 39, 3445–3455 (2005). https://doi.org/10.1016/j.atmosenv.2005.01.062

Chan, W.R., Joh, J., Sherman, M.H.: Analysis of air leakage measurements of US houses. Energy Build. 66, 616–625 (2013). https://doi.org/10.1016/j.enbuild.2013.07.047

Wang, X., Yu, H., Li, L., Zhao, M.: Experimental assessment on the use of phase change materials (PCMs)-bricks in the exterior wall of a

full-scale room. Energy Convers. Manag. 120, 81–89 (2016). https://doi.org/10.1016/j.enconman.2016.04.065

Hart, J., Watford, B.: A practical guide to infra-red thermography for building surveys. (1991)

Kalamees, T.: Air tightness and air leakages of new lightweight single-family detached houses in Estonia. Build. Environ. 42, 2369– 2377 (2007). https://doi.org/10.1016/j.buildenv.2006.06.001

Kulaib, A., Kalendar, A., Shafqat, H., Yousuf, A.: A Parametric Study Of The Energy Efficiency Of Existing Air-Conditioned Buildings In Kuwait. (2021)




DOI: https://doi.org/10.37591/jorachv.v9i3.1380

Refbacks

  • There are currently no refbacks.