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Abstract 
The physics of flow regime around a tapered cylinder is strongly three-dimensional (3D) 

and complex. These pose numerical difficulties in capturing the vortex shedding 
phenomena in the wake of cylinder. This paper discusses the main characteristics of vortex 

shedding behind a fixed linearly tapered circular cylinder at relatively high Reynolds 
numbers. A computational fluid dynamics model is employed to solve the 3D 

incompressible transient Navier-Stokes governing equations. The numerical model is first 

calibrated/validated against available experimental and Direct Numerical Simulations 

data for vortex shedding past circular cylinders from other researchers. The calibrated 

model is then employed to explore vortex shedding characteristics behind a stationary and 
mildly tapered cylinder. A range of Reynolds number up to 29,000 is considered. The model 

is able, reasonably well, to simulate key physical vortex shedding characteristics for 

tapered cylinders. Phenomena such as variation of the shedding frequency along the 
cylinder span or cellular vortex shedding, vortex dislocations or vortex splitting, oblique 

vortex shedding, streamwise or longitudinal vortices and the variation of the vorticity 

patterns along the tapered cylinder are discussed. Lift and drag force coefficients of the 
tapered cylinder are also presented. 
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INTRODUCTION 
Tapered circular cylinders or truncated cones 

are employed in a variety of engineering 

applications. Common examples are legs of the 

gravity based oil/gas platforms, main shafts of 

the offshore wind energy turbines, industrial 

chimneys, light houses and broadcasting towers. 

While being geometrically simple, this 

configuration creates a complex flow pattern in 

the near wake of the structure.  

 

A relatively extensive literature exists on the 

vortex shedding around and on the vortex 

induced vibrations in straight (uniform) circular 

cylinders [1–5]. The literature on the flow and 

vortex shedding past tapered, as opposed to 

straight, circular cylinders is relatively scarce. 

This is partly due to the three dimensionality of 

the wake behind a tapered cylinder, which are 

rather difficult to be properly quantified and 

captured in experiments and in simulations. 

With a tapered cylinder the local Reynolds and 

Strouhal numbers, even under a uniform inflow, 

vary spanwisely. A range of flow-regimes such 

as steady wakes, laminar unsteady wakes and 

turbulent wakes may coexist around a tapered 

geometry. At higher Reynolds numbers the 

physics of the flow in the near wake become 

even more complicated. These make the 

numerical simulation of vortex shedding past 

tapered cylinders a very challenging task. 

 

The literature on vortex shedding around 

tapered cylinders can be categorized into 

experimental and numerical studies, which are 

briefly reviewed below. 

 

EXPERIMENTAL STUDIES 
In his pioneer work, it has been addressed that 

vortex shedding past slender cones and tapered 

cylinders (taper ratios of 18 and 36) at 

Reynolds numbers ranging from 66 to 172 [6]. 

He concluded that velocity fluctuations in the 

cylinder wake are modulated. The modulated 

frequencies remain constant in regions along 

the cylinder span. Gaster and Hsiao called the 
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region with a constant vortex shedding 

frequency a vortex cell [6, 7]. The region 

between two cells with different frequencies 

was referred to as transition region or as 

intersection region. Piccirillo reported that the 

spanwise length of a tapered circular cylinder 

can be divided to specified number of cells [8]. 

Each cell is characterized by its own vortex 

shedding frequency. It is worth noting that 

vortex shedding can also become cellular 

because of the cylinder end conditions, 

non-uniformity in the velocity profile or 

discontinuity in the cylinder diameter [9]. 

Papangelou discussed local diameters effects in 

wind tunnel tests on slightly tapered cylinders, 

at low Reynolds numbers (order of 100) [10]. 

He concluded that the cellular flow 

configuration is dependent on the Reynolds 

number at larger diameter and independent of 

the tip Reynolds number. He also reported that 

the frequency jump between adjacent cells is a 

function of flow speed, taper angle and 

kinematic viscosity. Piccirillo reported that, 

unlike straight cylinders, for tapered cylinders 

the vortex shedding pattern is unaffected by the 

cylinder end conditions [10]. 

 

Techet studied the flow in the wake of forced 

vibrating tapered circular cylinders in towing 

tank experiments. The Reynolds numbers 

ranged from 400 to 1500. They reported that no 

vortex cell was forming in the lock-in region 

and that a single frequency response dominated 

the entire spanwise length [11]. It was also 

concluded that within specific parametric 

ranges a hybrid mode is observed, consisting of 

a `2S' pattern along the part of the span with the 

larger diameter and a `2P' pattern along the part 

of the span with the smaller diameter. 

 

Balasubramaniana investigated the relationship 

between the critical shear parameters in velocity 

and cellular vortex shedding at Reynolds 

number around 30,000. The results of the so 

called “aiding shear flow” on tapered circular 

cylinder showed cellular vortex shedding even 

for high shear parameters [13].Hsiao 

experimentally investigated cellular vortex 

shedding in tapered cylinders in a wind tunnel 

at sub-critical Reynolds number. Their results 

indicated the dependence of the Strouhal 

number (based on local diameter of the tapered 

cylinder) on the cylinder taper ratio [7]. 

Balasubramaniana experimentally studied 

vortex shedding in pivoted tapered circular 

cylinder subjected to uniform and shear 

velocity profiles. The Reynolds numbers ranged 

from 18,000 to 45,000 [14]. Their results 

demonstrated the sensitivity of lock-in range to 

the relative order of shear velocity gradient and 

axial taper of the cylinder. 

 

More recently Zeinoddini et al. experimentally 

studied streamwise and crossflow vortex 

induced vibrations of single tapered cylinders 

[15]. Two tapered cylinders with different mean 

outer diameters (28 and 78 mm), mass ratios 

(6.1 and 2.27) and taper ratios (5 and 20) were 

considered. They have concluded that 

regardless of the taper or mass ratios, the 

lock-in range in tapered cylinders was wider 

than that in their equivalent uniform cylinder. 

Tapering had reportedly contradictory effects 

on the peak reduced cross-flow amplitude of the 

vibrations. For two tapered cylinders, it was 

reported that the mass ratio variation had more 

significant influence on the lock-in range and 

the peak reduced amplitudes of the cross- flow 

vibrations than the taper ratio. 

 

Numerical Studies 
It is noted that numerical simulation of the 

vortex shedding in the wake of a bluff body or 

flexible structures has only become feasible in 

the past two decades. This is because it 

typically requires massive computational efforts 

and advanced computation tools to solve the 

corresponding 3D transient Navier-Stocks 

equations. Vortex shedding around tapered 

cylinders in laminar flows was numerically 

simulated by Jespersen [16].Valles et al. 

numerically simulated vortex shedding in 

tapered circular cylinder with laminar flow at 

low Reynolds numbers (between 130 to 180, 

based on larger diameters of the cylinder) [17]. 

The simulation results show very good 

agreement with experimental data. 

Narsimhamurthy et al. simulated a tapered 

cylinder using an Immersed Boundary Method 

(IBM) [18]. Their predictions for the Strouhal 

number versus the local Reynolds number, 

however, did not accurately follow the 

experimental results. Parnaudeau et al. also 

carried out IBM direct numerical simulations of 

vortex shedding in tapered cylinders [19]. 

 

Xu and Zhu numerically simulated the 

crossflow and streamwise VIV of an elastically 
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mounted cylinder [20]. They have compared the 

results with experimental data. Chen 

numerically simulated the 3D rigid circular 

cylinder within LES method of CFX5 [21]. Lift 

and Drag force coefficients and vortex patterns 

around the cylinder were investigated. Recently 

Ai numerically simulated unsteady flows 

around a 2D circular cylinder at high Reynolds 

number [22]. They have solved the 2D 

Unsteady Reynolds-Averaged Navier-Stokes 

(URANS) equations with a k-ɛ turbulence 

model.   

 

In the current study the turbulent 3D vortex 

shedding phenomena on fixed tapered circular 

cylinders at subcritical Reynolds numbers is 

numerically investigated. Proper values for the 

sensitive parameters are selected by calibrating 

the model predictions against experimental data 

from other researchers. The calibrated model is 

further validated by comparing its predictions 

against different sets of small scale 

experimental vortex shedding data on tapered 

cylinder. The validated model is finally 

employed to study the detailed aspects of the 

vortex shedding phenomena in a tapered 

cylinder. 

 

MODEL OUTLINES AND 

SENSITIVITY ASSESSMENT  

Ansys-CFX12 computational fluid dynamics 

model is used to solve the 3D incompressible 

transient Navier-Stokes equations for 

simulating the flow and vortex shedding behind 

tapered cylinders at subcritical Reynolds 

numbers [23]. Overall dimensions of the 

computational domain, used in the sensitivity 

study, are shown in Figure 1(a). This model 

replicates wind tunnel experiments on linearly 

tapered cylinders (cones) carried out by 

Balasubramanian [13].Two uniform and tapered 

cylinders are simulated in different stages of the 

present study. The geometrical information of 

the two cylinders is included in Table 1. 

 

A semi developed velocity profile, along the 

transverse direction of the domain, is 

introduced to the inlet boundary. A 

twelve-degree polynomial is used to define the 

flow velocity profile relative to the wall 

distance. The profile remains vertically 

(spanwisely) constant. A zero static pressure 

condition is introduced on the outlet boundary. 

It is noted that Balasubramaniana did not report 

data regarding the horizontal velocity profile in 

the wind tunnel. They only state that the 

horizontal velocity was uniform and equal to 

11.35 m/s. 
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Fig. 1: (a) Overall View the Computational 

Domain (Dimensions are in Meter and D is the 

Centrespan Diameter of the Tapered Cylinder) 

(b) Inlet Velocity profile (right) Considered in 

the Sensitivity Assessment and Validation of 

the Numerical Model. 

 

The velocity, inevitably, reduces to zero on the 

wind tunnel faces. The profile in Figure 1 

which gives a velocity of 11.35 m/s in the best 

width of the fluid domain and drops to zero at 

two ends, is assumed to represent the horizontal 

velocity field throughout the experiment. 

Balasubramanian however, made measurements 

on the vertical velocity profile, which indicated 

on a constant wind speed of 11.35 m/s in the 

vertical direction [13]. This was because they 

considered two end plates on top and bottom of 

their test cylinder. For simulating the 

experiment velocity field in the experiment, a 

free slip wall condition is prescribed on the 

upper and lower side walls of the fluid domain. 

(a) 

(b) 
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The classical no-slip condition is included to 

the side walls of the computational domain 

and on outer surface of the cylinder. The 

above choices of wall boundaries are in 

agreement with other researchers like Kalro 

and Tezduyar LES studies and 

Balasubramaniana studies [24]. The inlet 

velocity profile in Figure 1 (b) is producing a 

horizontally uniform air flow velocity field of 

11.35 m/s upstream of the cylinder. The 

computational time varies from 1 to 3 percent 

of the vortex shedding period [24]. 

 

The sensitivity analysis results indicate that 

the model behaviour, for Reynolds numbers 

ranging from 10,000 to 30,000, is very 

sensitive to i) the spatial grid resolution in the 

computational domain and ii) the type of 

turbulence model chosen for the analysis. 

Correct values for the sensitive parameters are 

decided through a course of model calibration, 

as presented in the next section. 

 

MODEL CALIBRATION 
Labbe and Wilson reported that for accurate 

estimation of 3D wakes instabilities, in a 

straight cylinder at Reynolds numbers higher 

than 300, simulating πD/2 to πD of the 

spanwise length is sufficient. A stationary 

three dimensional uniform circular cylinder at 

subcritical Reynolds number is used for 

calibrating the mesh resolution in the flow 

domain. The cylinder diameter and length are 

0.05 and 0.157 meter, respectively. They 

correspond to those considered in the Dong 

and Karniadakis studies [25]. The inlet air 

flow velocity is 3m/s (Re=10,000).  

 

Different computational mesh resolutions, 

varying in both planar and the spanwise 

directions of the domain, are considered. The 

computational mesh consists of two blocks. 

The first block encircles the cylinder and is 

formed by very fine, regular hexahedral 

elements. The unstructured second block is 

surrounding the first block and consists of 

mostly hexahedral elements, with a few prisms. 

Computational mesh characteristics for the 

five cases examined are summarized in Table 

2. The table also gives the wall clock time for 

computing 1024 time steps on an Intel (R) 

Core™ i7 CPU 950 @ 3.07GHz personal 

computer (6GB RAM). LES-Smagorinsky 

turbulent model is considered with all five 

models. 

 

 

Table 1: The Geometrical Information of the Two Cylinders Simulated in Current Study. 

Cylinder Dmin (cm) 

Dmax 

(cm) 

Length Re Remark 

Tapered 3.016 4.76 41.28 10,000 
Replicates wind tunnel experiments by Balasubramanian  

et al. [13]. 

Uniform D πD 29,000 Replicates Dong and Karniadakis [25] DNS Studies. 

 

Table 2: Details of the Five Computational Mesh Resolutions. 
Wall clock time for 1024 

time steps (hour) 

Number 

of nodes 

Number 

of 

elements 

 

 

z+ 

 

 

y+ 

Number 

of span 

wise 

divisions 

First 

inflation 

layer 

thickness (m) 

Mesh 

number 

Serial Runs Parallel 

Runs (8 

partitions) 

- 11 858,176 832,095 1.65 0.30 45 1.5×10
-5

 1 

9 - 316,472 295,184 1.75 0.32 16 1.5×10
-5

 2 

16 - 579,064 500,220 1.64 1 45 5×10
-5

 3 

12 - 372,372 355,712 1.68 0.98 32 5×10
-5

 4 

6 - 191,828 177,856 1.75 1.1 16 5×10
-5

 5 

 

Check point results from each simulation are 

presented in Table 3. They include the 

Strouhal number plus the lift and drag 

coefficients. Corresponding direct numerical 

simulation (DNS) results from Dong and 

Karniadakis and some experimental data are 

also provided for comparison [25]. Table 3 

shows that the number of spanwise divisions 

has a remarkable effect on the models' 

predictions. A low number of subdivisions 
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(Mesh 2 and Mesh 4 with N=16) provides the 

poorest predictions, as compared to the 

experimental results and those from the 

DNS-B3 model from Dong and Karniadakis 

[25].Mesh 4 with N=32 provides the best 

predictions for the Strouhal number and the lift 

and drag coefficients. Mesh 4 might seems 

relatively course but extra refinements in the 

spanwise subdivisions (Mesh 1 and Mesh 3 

with N=45) is counterproductive. It seems that 

for an accurate simulation, there might be a 

certain proportion between the length and 

diameter of the cylinder and the number of 

spanwise divisions. Here Mesh 4 with N=32 

provides the best predictions but selection of 

an optimum number of spanwise divisions 

needs some more investigation which can be 

included in the future works. 

 

As it can be seen in Table 3, utilizing a very 

fine mesh in the planar direction costs longer 

computations without much improvement in 

accuracy. It should be noted that in the 

selection of the most optimum grid refinement 

one should consider the computational cost. 

Table 3 indicates that the efficiency of the 

parallel run relative to a serial run, assuming 

that the problem is stationary, is around 30%, 

which does not seem very high. This is partly 

because the performance determination is not 

sometimes straightforward due to the fact that 

only part of the solver run is actually 

performed in parallel. The reading and 

distributing of the solver input file data, and 

the collecting and writing of results file data 

are highly I/O dependent and not parallelized. 

These stages, therefore, depend on high disk 

speeds and fast network communication for 

fast operation (ANSYS, Inc. April). Time 

stepping and convergence also play a role in 

the computation performance. It is noted that 

identical time stepping and convergence 

criteria are considered for the parallel and 

serial runs. Mesh 4 seems to provide 

reasonable agreement with the experimental 

results and those from the DNS-B3 model 

from Dong and Karniadakis, while demanding 

relatively low computational efforts. Figure 2 

provides comparisons between the predictions 

from Mesh 4 and the DNS results from Dong 

and Karniadakis [25].The time histories of the 

lift and drag coefficients from the two studies 

are presented in the Figure 2. In general, 

Figure 2 presents a reasonable agreement 

between the simulation results from the 

current study and the DNS results Figure 2 the 

CL (lift coefficient) amplitude from the current 

study is somewhat larger than that from Dong 

and Karniadakis  (around 11% differences in 

the CL RMS)[25]. This can be attributed to the 

fact that the current study employs a LES 

turbulence modelling approach while the Dong 

and Karniadakis results are based on a direct 

numerical simulation (DNS). It is worth noting 

that the model used in the current study 

requires a considerably lower computation 

time as compared to the DNS simulations 

which took advantage of parallel performance 

of a Compaq Alpha cluster with 1536 

processors (Table 3). 

 

Numerical results presented in Table 3 are 

obtained by considering a Large Eddy 

Simulation (LES) [26] turbulence model with 

Smagorinsky subgrid scale viscosity. Table 3 

indicates that the LES-Smogorinsky model 

(e.g. Mesh No. 4) is able to provide 

predictions reasonably close to the 

experimental measurements. This falls in line 

with findings from other researchers. For 

example, Murakami and Rodi compared the 

capability of the LES model with other well 

known models like K-ε and Algebraic Stress 

models when simulating the flow around bluff 

bodies [27, 28]. They concluded that the LES 

model provides reliable and accurate 

simulations of the flow characteristics. 

 

Effects of three different LES subgrid-scale 

models, namely the Wall-Adapted Local 

Eddy-Viscosity model or WALE model 

Nicoud and Ducros, the Smagorinsky model 

and the Dynamic Smagorinsky-Lilly model, 

on the simulation results (of uniform cylinder 

described in this Section) are investigated. 

Check point results from each simulation, such 

as the Strouhal number and lift and drag 

coefficients, are presented in Table 4 [27–31]. 

As it can be noticed the Smagorinsky model 

provides better predictions as compared to the 

Direct Numerical Simulation (DNS) results by 

Dong and Karniadakis and experimental data 

(Table 3). As a result the LES turbulence 

model with Smagorinsky subgrid scale 

viscosity is used for the rest of simulations 

reported. 
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Fig. 2: Time Series of the Lift and Drag Coefficients for the Flow past a Stationary Uniform Cylinder 

from (a) Mesh 4 (see Table 2) in the Current Study (b) Direct Numerical Simulation by Dong and 

Karniadakis. (T is time in second, U0 is the Upstream Flow Velocity in m/s and D is the Cylinder 

Diameter in Meter, Cl is the Lift and Cd is the Drag Coefficient). 

 

Table 3: Results Check Points for the Computation Mesh Resolution, Including Lift and Drag 

Coefficients and Strouhal Number. 

Wall clock time for 

1024 time steps (hour) 

Strouhal 

number 

Mean drag 

coefficient 

RMS lift 

coefficient 
Description 

11 hours of parallel runs 

(8 partitions) 
0.191 1.23 0.589 Mesh 1 (current study) 

9 hours of serial run 0.202 1.33 0.798 Mesh 2 (current study) 

16 hours of serial run 0.197 1.21 0.56 Mesh 3 (current study) 

12 hours of serial run 0.198 1.16 0.502 Mesh 4 (current study) 

6 hours of serial run 0.208 1.29 0.78 Mesh 5 (current study) 

20,000 to 250,000 

hours 

 

0.195 1.155 0.538 DNS-A1[25] 

0.209 1.11 0.565 DNS-A2 [25] 

0.205 1.128 0.574 DNS-A3 [25] 

0.200 1.208 0.547 DNS-B1 [25] 

0.205 1.12 0.497 DNS-B2 [25] 

0.203 1.143 0.448 DNS-B3 [25] 

Experiment - 1.143 - Wieselsbebrger [37] 

Experiment 0.201 - 0.463 Bishop and Hassan [38] 

Experiment - - 0.532 Moeller and Leehey [39] 

Experiment - 1.186 0.461 West and Apelt [40] 

Experiment 0.202 - 0.394 Norberg [41] 

 

Table 4: Effects of Three Different LES Subgrid-Scale Models on the Results Check Points. 
Computational 

mesh 
Subgrid-scale model 

Strouhal 

number 

Mean drag 

coefficient 

Lift coefficient 

(RMS) 

Numerical model: 

Mesh4 

Smagorinsky 0.198 1.16 0.502 

Dynamic Smagorinsky-Lilly 

model 
0.194 1.18 0.532 

WALE model 0.189 1.36 0.788 

 

Calibration results (Table 3 and Figure 2) 

showed that Mesh 4 provides reasonable 

predictions for Strouhal number, drag and lift 

coefficients and temporal variations of the two 

coefficients, as compared to the Dong and 

Karniadakis and the experimental results [25]. 

The model also requires low computational 

efforts. These, however, cannot guarantee that 

the model will function correctly with other 

geometries or other flow conditions. It is, 

therefore, necessary to further validate the 

model against different experiments and to 

verify if it represents the physics of the 

problem properly. The model verification will 

be discussed in Section 4 and its predictions 

for the physics of the vortex shedding behind a 

tapered cylinder will be provided in Section 5. 

 

Drag Coefficient 

Lift Coefficient 

(a) (b) 
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MODEL VALIDATION 
The experimental results from 

Balasubramaniana et al. are used for the 

validation of the numerical model employed in 

the current study. They carried out wind tunnel 

tests on a stationary tapered solid aluminium 

cylinder under uniform and linear shear flows 

[13]. Data on the cylinder geometry and the 

inlet velocity are provided in Table 5. The 

work of Balasubramanian includes vortex 

shedding behind one tapered cylinder under 

both uniform and shear flow regimes. Only 

one experimental output for the uniform flow 

is presented in the paper. Their result for 

uniform flow (Figure 3(b)) is used for the 

verification of our model. To provide further 

validations of the model we also compare our 

results with those from a different 

experimental work [7].Mesh resolution No. 4 

(Table 2) is used for the simulations reported 

in this section. 108 equally spaced divisions 

are considered in the spanwise direction. The 

LES turbulence model with a Smagorinsky 

subgrid-scale scheme is used. The boundary 

conditions on the cylinder surfaces and on the 

fluid domain are the same as described in 

Section 2. 

 

Fourier representations of the horizontal 

velocity in the wake of the stationary tapered 

cylinder, from the simulations (current study) 

and the experiments are provided in Figure 3 

[13]. The monitoring points have a coordinate 

of 10.16 cm in the streamwise direction and 

3.3cm in cross stream direction from the 

cylinder axis. The dominant vortex shedding 

frequencies at different spanwise elevations 

from the current simulation (Figure 3(a)) 

appear to be in reasonable agreements with the 

corresponding experimental results (Figure 

3(b)). As it can be noticed, the dominant 

vortex shedding frequency experiences, 

spanwise, changes of 50 to 76 Hz. 

 

 

 

Spanwise spectra from the experiments 

(Figure 3(b)) are comparatively smoother and 

broader than those obtained in the current 

simulations. This is most likely because the 

total measurement time in the experiment is 

significantly higher than the simulation 

duration. Long time series are likely to 

produce smooth and broad spectra. In general, 

the calibration and validation results presented 

in Sections 3 and 4 reveal that the current 

computational model allows for an acceptable 

simulation of the vortex shedding past a 

tapered cylinder. 

 

   
 

      
Fig.3: Spanwise Spectral Analysis of the 

Velocity Time Series in the Wake of the 

Stationary Tapered Cylinder from (a) The 

Current Study and (b) Experiments by 

Balasubramanian et al.[13].

Table 5: Geometries of the Tapered Cylinder and the Upstream Velocity used in the Wind Tunnel Tests 

by [13] and in The Model Verification (current study). 
Taper 

ratio 

Length of the 

tapered cylinder 

(cm) 

Re 

(based on Dmean) 

Larger end 

diameter (cm) 

Smaller end 

diameter (cm) 

Inlet velocity 

(m/s) 

23.7 41.28 29419 4.76 3.016 11.35 

  

(a) 

(b) 
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RESULTS AND DISCUSSIONS 
The computational model explained in 

previous sections is used to explore vortex 

shedding characteristics past linearly tapered 

cylinders in subcritical Reynolds numbers. 

The flow velocity and cylinder dimensions are 

given in Table 5. Different phenomena such as 

variation of the shedding frequency along the 

cylinder span or cellular vortex shedding, 

vortex dislocations or vortex splitting, oblique 

vortex shedding, streamwise and spanwise 

vortices and the variation of the vorticity 

patterns along the tapered cylinder are well 

demonstrated by the numerical model. Time 

histories of the lift and drag force coefficients 

of the tapered cylinder are also provided. This 

section summarizes and discusses some of the 

results and observations. 

 

Vortex Splitting 

By making use of pseudo-flow visualization 

technique, which was developed by Wat, the 

vortex splitting or dislocations can be 

identified [32]. Numerical results for the time 

history of the pressure and velocity at arbitrary 

monitor points in the wake of the stationary 

tapered cylinder are presented in Figure 4. The 

monitoring points have a coordinate of 10.16 

cm in streamwise direction and 3.3cm in cross 

stream direction from the cylinder axis. 

 

In addition, timeframes of the pressure and 

velocity contours are provided in the left sides 

of Figure 4. The red colours represent the 

peaks (local maxima) and the blue colours 

denote the valleys (local minima). The 

pressure or velocity peaks demonstrate the 

passageways of the vortices [7]. Therefore, red 

areas in the left figures show the spanwise 

spreading of the vortex lines in the wake of the 

tapered cylinder. A kink in the vortex line (see 

Figure 4) indicates the onset of a vortex 

splitting (or vortex dislocation). As it can be 

seen, both the velocity and pressure contours 

depict very similar vortex spreading patterns 

in identical time intervals. 

 

 

 

 

 

(a) 

 
 

 

(b) 

Fig. 4: Pseudo-Flow Visualization. (a) Pressure Fluctuation (b) Velocity Fluctuation. Time histories of 

the Pressure/Velocity Fluctuation (right), Contour Lines of the Pressure/Velocity (left). 
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Cellular Vortex Shedding  

In order to specify the number of spanwise 

vortex cells, the numerical predictions for the 

Strouhal numbers along the cylinder axis are 

extracted and presented in Figure 5. The 

results are for a cylinder with a taper ratio of 

23.7 in a Reynolds number of around 29,000. 

The geometrical properties remain the same as 

those given in Table 5. A spanwise region with 

an unvarying Strouhal number represents a 

vortex cell. Each zone indicates a discrete 

shedding cell, with its own constant shedding 

frequency. For defining the Strouhal numbers 

we follow the approach considered by Hsiao 

[7]. They used the mean diameter of the 

tapered cylinder for this calculation. We 

follow the suit to provide a basis for the 

comparison between their results and those 

from the current study. The Strouhal numbers 

might also be defined based on local diameter 

at z/L, like St (z) =f D (z/L)/U. In that case the 

graphs provided in Figure 5 may become 

much flatter. From Figure 5(a), five distinctive 

shedding cells, along the tapered cylinder axis, 

can be identified. For the sake of comparison 

the Strouhal numbers in experiments carried 

out by Hsiao [7] are also presented in Figure 5. 

The centre span diameter and the length of the 

tapered cylinder employed in the test were 

similar to those used in the current numerical 

model but the taper ratio was 24.4. The 

Reynolds number was 14,000. Figure 5 shows 

that the experimental Strouhal numbers at two 

ends slightly differ from those of the 

numerical model. The number of vortex cells 

in the experiment is four. The lengths of the 

associated vortex cells in the experiment and 

in the numerical results are not the same. 

These differences are attributed to the fact that 

the Reynolds number and the taper ratio in the 

numerical model (current study) and the test 

are different [7]. Time histories of the lift and 

drag coefficients of the tapered cylinder are 

shown in Figure 6. The RMS of the lift 

coefficient and the mean drag coefficient is 

0.15 and 0.98, respectively. 

 

Oblique Vortex Shedding  

Oblique, versus parallel, shedding is a 

distinctive feature of the vortex dynamics in 

the wake of tapered cylinder. This 

phenomenon is captured during vortex 

shedding experiments in a uniform stream past 

tapered cylinders and in a shear flow past 

straight cylinders. In a uniform stream, end 

effects can also trigger oblique shedding 

behind uniform circular cylinders. 

 

 
Fig. 5: Numerical Predictions (current study) 

and Experimental Data [7] for the Strouhal 

Number Variation along a Tapered Cylinder 

Axis (z). 

 
Fig. 6: Time Histories of the Lift and Drag 

Coefficients of the Tapered Cylinder. 

 

For tapered cylinders, the oblique vortex 

shedding phenomenon is primarily caused by 

the geometrical inhomogeneity along the span. 

The obliqueness angle between the shed 

vortices and the cylinder axis was reported to 

vary from 5
o
 to 25

o
, before vortex splitting 

occurs. During each split, the vortex lines far 

away continue to steepen up to 50
o
 [17]. 

Current simulation 

(Re=29,000) 

(a) 

(b) 

Hsiao and Chiang [7] 

experiments 

(Re=14,000) 
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Figure 7 depicts results from the current study 

for the instantaneous vorticity contours in the 

wake of a stationary tapered cylinder. The 

Reynolds number is 29,000. The blue areas in 

Figure 7 show negative or clockwise 

vorticities and the red areas denote positive or 

anti-clockwise vorticities. Figure 7(b) shows 

the vorticity contours in a 

spanwise-streamwise plane passing the 

cylinder axis. Figure 7(a) gives the vorticity 

contours in three planar sections along the 

cylinder span. The planar sections are located 

close to the two ends and in the mid span of 

the cylinder. From Figure 7(a), evolution of 

oblique vortex shedding behind the tapered 

cylinder together with the vortex dislocation 

can be appreciated. Patterns of vortex 

shedding, with a strong obliqueness, and their 

splitting are clearly demonstrated in Figure 

7(b). Kinks in vortex lines, which indicate on 

onsets of vortex splitting, can be noticed in 

Figure 7(a) and Figure 7(b). 

 

       
 

   
Fig. 7: Numerical Results (current study) for the 

Distribution of Instantaneous Vorticity Contours 

in the Wake of the Stationary Tapered Cylinder. 
Blue Areas Show Negative and Red Areas 

Present Positive Vorticities. 

 

Longitudinal Vortices 

In the dye visualization of vortex shedding 

patterns past uniform cylinders at Reynolds 

number greater than 140, Gerrard noticed the 

existence of 3D structures in the form of “dye 

fingers” along the cylinder span[33]. Wu et al. 

related these finger type patterns to the 

existence of longitudinal vortices inclined 

relative to the streamwise direction [34]. These 

so called dye fingers were named by Techet as 

streamwise vortices [12]. They are also known 

as longitudinal vortices or ribs. Wu et al. 

reported that these longitudinal vortices 

wander along the span of the cylinder. 

Measurements on the velocity fields in the 

wake of cylinders by Hayakawa and Hussain 

substantiated formation of longitudinal 

vortices in the wake of straight cylinders 

[34–41]. They called these three-dimensional 

characters of the wake as ribs wrapping around 

rolls or ribs in the braid. 

 

The model used in the current study also 

successfully captured the longitudinal vortices 

or ribs at the near wake of the tapered cylinder. 

The geometrical properties of the simulated 

tapered cylinder remain the same as those 

given in Table 5 and the Reynolds number is 

around 29,000. Figures 8(a), (b) give the 

instantaneous isosurfaces of the total pressure 

and the isocontours of the spanwise vorticities, 

respectively. They clearly demonstrate the 

presence and evolution of longitudinal vortices 

(or the so called fingers) along the cylinder 

span. Figures 8(c) to Figure 8(f) illustrate the 

evolution of the longitudinal vortices in the 

wake of the tapered cylinder. These figures 

depict the streamwise vorticity contours on a 

vertical plane in the near wake of the tapered 

cylinder. The presence of three-dimensionality 

in the wake region can be inferred from these 

figures. It can be seen that the streamwise 

vortices are almost paired and their intensity is 

relatively higher at the mid span of the 

cylinder. Furthermore, the intensity of the 

streamwise vorticity is much higher than the 

corresponding spanwise vorticity. These types 

of three dimensionality effects are an 

important feature of the vortex dynamics in 

tapered cylinder wakes. The complex three 

dimensional natures of the wakes behind a 

tapered cylinder can be understood from 

Figure 9. The figure depicts the instantaneous 

streamwise vorticities in the wake of the 

tapered cylinder. Figure 9 indicates that 

longitudinal vortices do exist in the far 

downstream of the cylinder. It is noted that the 

axial diffusion of streamwise vortices, caused 

by the longitudinal vorticity, may have an 

important effect on the response of a flexible 

tapered cylindrical structure in uniform and 

non-uniform flow field. 

(a) 

(b) 
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(a) t=1.026 s (b) t=1.026 s (c) t=1.026 s 

   
(d) t=1.029 s (e) t=1.032 s (f) t=1.035 s 

Fig. 8: Instantaneous Streamwise Vortices. (a) Finger Shape Patterns at the Near Wake of the Tapered 

Cylinder. (b–f) Evolution of the Streamwise Vortices Over Time. 

 

 
Fig. 9: The Instantaneous Streamwise Vorticity in the Wake of the Tapered Cylinder. 

 

CONCLUSIONS 
Turbulent 3D vortex shedding phenomena past 

a tapered stationary cylinder under a uniform 

flow at subcritical Reynolds numbers is 

studied. A numerical approach based on the 

solution of 3D transient Navier-Stokes 

equations is considered. The sensitivity 

analysis results indicate that the model 

behaviour is very sensitive to i) the grid 

resolution in the computational domain and ii) 

the turbulence model. Different turbulence 

models and mesh resolutions are tested in the 

sensitivity analysis. The computational mesh 

of the numerical model is calibrated with 

others DNS and experimental results. The LES 

turbulence model with a Smagorinsky 

subgrid-scale scheme is found to provide a 

reasonable estimate for the dominant vortex 

shedding frequency in the wake of a tapered 

cylinder as compared to experimental data. 

The model is also validated against separate 

sets of experimental data. Reasonable 

quantitative agreements are obtained between 

the model predictions, for the vortex shedding 
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past a tapered circular cylinder, and the 

experimental results from other researchers.  

The numerical model is then used to 

investigate vortex shedding characteristics past 

tapered cylinders. Key physical characteristics 

such as vortex dislocations and splitting, 

cellular vortex shedding, oblique vortex 

shedding and the variation of the vorticity 

patterns along the tapered cylinder are 

successfully simulated and captured. The lift 

and drag force coefficients of the tapered 

cylinder are also calculated. 
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NOMENCLATURE 

 

 

 

 

 

 

 

 

 

 
 

D Diameter of the uniform cylinder      L Cylinder length 

Dmean Mean diameter of the tapered cylinder     n Kinematic viscosity 

DMax Larger diameter of the tapered cylinder      FL Total lift force 

DMin Smaller diameter of the cylinder     Fd Total drag force 

V Current velocity     fs Vortex shedding frequency in the wake 
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