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Abstract
Current challenging scenario of environment and technologies causing Oil/Gas industry
to focus on designing the development program of a field that is only possible with the
help of Integrated Production modeling accurately. Managing the reservoirs through
correct modeling can lead to best destinations. IPM provides key understanding of field
from reservoir to separator conditions. It can provide best communication between
wellbore and surface facilities Hence it can provide best economical visualization of an
Oil/Gas field. The compilation is comprised of usage of IPM to design a development
program of a field using real field data in order to find best way to produce well
economically. Here we have focused on data obtained from a condensate field having
PVT, well test, well logs and production history to design a field development program
including the transfer of the size and function of the bare model sensitivity analysis, which
provides a variety of media stored in the pressure distribution profiles based on both the
production and its position through IPM Software. Our focusing criteria were to gather
data from a field, summarized it through best methods, run different iterative methods to
correct some problems in the field and summarize it. Hence this activity enabled us to
come with awareness of different problems effecting overall well performance and their
solutions. We have done our best to utilize our skills to design a field development

program using software skills.
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AIMS AND OBJECTIVES FOR CASE
STUDY EVALUATION

The aim of our project was to develop a
strategy for the development of a real small
area of oil or gas field, which is at a very early
stage of development utilizing Integrated
Asset Modeling concept which includes a
variety of building models from sub-surface
reservoir surface. After much struggle we have
been successful in getting a chance to learn
one of the spaces XYZ, which is actually a
newly developed gas condensate field. In this
study, two models are created using the
compositional fluid model and a good model
modeling central analysis. The remaining
chapters discuss the various steps of the
models that generate their own software model
checking and initial and current scenario,
different results, and finally, the conclusion of
all the results to come up with a better strategy
is to optimize the production of field.

CHARACTERISTICS OF GAS

CONDENSATE RESERVOIRS

Opening hours, click typical condensate gas
reservoirs can be above or near the critical
pressure. At this stage, there is only one phase
of gas. However, production is carried out, is
the loss of pressure and tilt the bottom hole
pressure and flow falls below the dew point of
the liquid hydrocarbons in the liquid phase is
formed[1, 2]. The result is condensation
degrades the fluid around the oil phase,
reducing the efficiency of the gas permeability
of the borehole. Liquid drop occurs near the
well diameter and spreads radially away from
the well, along with a fall in pressure [3, 4].
Understanding  the  multi-phase  flow
phenomena in reservoirs is the main
characteristics of condensed drop were
blocking effect. Therefore, bearing in mind
that the above composition model was created
to describe the changes in the composition of
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the fluid during the full production history of
the wells. Short natural gas reservoirs
generally exhibit deteriorating relations
between the oil and gas 3000-50000 SCF/
STB and specific liquid between 40 and 60
API [5].

FLUID CHARACTERIZATION

(PVT MODELING)

To develop any model either reservoir, well or
surface, we need to feed the representative
reservoir fluid data into the required software.
That’s why before proceeding towards any
type of modeling; we need to generate the
PVT properties of the reservoir fluid. This
process is known as PVT modeling and is
carried out in either Pwvti module by
Schlumberger or PVTP software by Petroleum
Experts. For our study, PVTP software is
being used. PVTP provides the basic of
compositional model for reservoir fluids. As
our fluid composition was that of condensate
SO it was better to go by detailed
compositional model through PVTP involving
each fractions weightage/percentage [6].

The PVT package can be used as a stand-alone
analytical tool, or can be used to generate
tables of  fluid properties, reduced
compositions or matched parameters (Tc, P, ®
Volume Shift Parameters and Binary
Interaction Coefficients) for other applications
such as reservoir simulators, well analysis
packages, up to production process simulator.
As the industry integrates their reservoir,
production wells, surface gathering network
and process models together having consistent
PVT characterizations that can be used at all
levels in the system is fundamental. A
reservoir engineer will typically have a
characterization with up to five pseudo, while
the process engineer wants to model each
component. PVTP enables a representative
characterization to be developed for both
engineering needs [10, 11].

e The ability to manipulate and predict
compositional changes using two distinct
methodologies.

e The Black Oil Model.

e The Equation of State Model — EoS.

First of all the composition of respective fluid
was fed into software as an input which

contained the name of each fraction (e.g. C1,
C2, C3 N2 CO,) and there respective molar
composition in percent. Till C7+, the
composition was entered as an input and then
it was further splitted in the software to get the
better results as shown in the Figure 1.6.

Thus, compositional model was prepared on
the basis of the entered composition and
properties like critical pressure, critical
temperature, eccentric factor, critical volume,
etc. for each component separately using the
Peng-Robinson equation of state.

At initial every fluid model will not behave as
the actual one and therefore there is the need
of matching. This is done by entering the lab
data so that model should not divert away and
behave as closely as it can as a real reservoir
fluid.

Two main tests performed on fluid in
laboratory are constant composition expansion
(CCE) test and Constant volume depletion
(CVD) test.

The main purpose of constant composition test
is to calculate saturation pressure of fluid at
reservoir temperature. The fluid is normally
flashed above the reservoir pressure and
pressure is dropped at constant temperature by
releasing mercury from PV cell [7,8].

The increase in gas volume is noted at each
decrement of pressure till the liquid forms here
it should be noted that the composition of fluid
does not change because no any component is
retrieved.

In the CVD test, the starting pressure is the
saturation pressure. Then the pressure is
constantly decreased and liquid drop-out is
observed at each stage. During the test, at
various stages, there is change in volume of
the cell due to reduction in pressure and liquid
drop-out, therefore the gas is being flashed out
from the PVT cell to make the volume
constant in the cell at each stage [12].

The test data from laboratory analysis was fed
into PVTP software to observe physical
changes of volume of fluid at various
conditions of pressure and temperature and to
match the fluid model. Various parameters like
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liquid drop-out during the CCE and CVD
tests, Vapor Z-factor during both tests and
relative volume during CCE test were fed as
the lab data into the software.

As we suspected, there was an error between
the calculated compositional model and
laboratory analysis.

Regression was then performed several times
to compensate for errors and matching the
compositional model. Some of the output
charts after the regression from the PVTP are
shown in the Figures (1.2-1.6) respectively:

/ Exit and Save

Several graphs are generated with the help of
software modelling and those graphs are
represented over here in order to evaluate the
capability of a well either it is producible or
not. These graphs after sensitivity also suggest
the major helpful points to improve the
methods to recover the reservoir economically.

The results after the regression were quite
satisfactory as shown in the above figures and
the overall error was found to be less than 10%
which is the basic requirement of a valid.

x Cancel ? Help ‘ Wiew... hqglrl; Units
Pseudo Props. ﬁ E | Coeffz... ‘ E Buick Calc.
- General !
EETmERe Tops Molar Mole_,c:ular MNumber of Component: |15
percent, “wheight
Mumber of Pzeudos 4

1 M2 Pure Mon Hud 1.262 28.01 Grouped I Matched W
Z  |coz Pure Mon Hyd 3.231 14.01 Composiion Input Dptions
] Hz25 Pure Mon Hyd 0.0001 341 Input as m
4 C1 Pure Hyd E8.2349 16.04 * Percent  Fraction
5 cz2 Pure Hyd 11.35 301
[ B3 Pure Hyd E.15099 441
7T |ic# Fure Hyd 0.347333 581 Reference Data
3 Ca Furs Hyd Toed ES Fieszervair Temperature
3 [ics Pure Hyd 0513 722 27 decly

Reference Depth
10 | nCH Pure Hyd 0.625399 722

108071 feet
11 CE Pure Hyd 0.679599 83E.2

Fieference Pressure
12 | Cr:10 Pseudo 2.82502 126313

BO27.3 psig
13 | C11:14 Pseudo 1.54812 178,883
14 | C15:16 Pzeudo 0454823 220138
15 | C17:Cz20 Pseudo 0.38803 250424 - |

< [ r Iy Wellstream f

Fig. 1.1: The Composition of the Reservoir Fluid.
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Fig. 1.2: Match of Cvd Vapor Z-Factor after Regression (Pvtp Plot).
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Fig. 1.6: Match of Cce Vapor Z-Factor after Regression (Pvtp Plot).
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Fig. 1.7: Phase Envelop of the Fluid System.

A STEP TO WELLBORE SCENARIO
AND ITS MODELING

The major step of modeling a wellbore is done
using prosper software which is a common
tool used in oil industry which models
naturally flowing oil, gas, condensate and
artificial wells. This chapter shows our
approach towards building a model of a
natural flowing condensate well X1.

The basic task of the study is to find out the
decision to be taken to enhance the production
of a well when reservoir pressure has been
declined. Before coming on to the task, let's
have a look at the initial and the existing
scenario of the well.

Initial Well Scenario

At initial condition, the pressure buildup and
flow after flow tests were conducted on the
well X1 whose results are shown in the

Figures 1.8 and 1.9 respectively and the
reservoir properties are shown in Figure 1.10.

At initial conditions using the above
mentioned well test data an IPR model has
been generated in prosper which is shown in
the Figure 1.11. All the three test points fall on
the IPR curve which indicates its validity.

After the IPR there is a need to generate the
vertical lift performance (VLP) curve for the
well. For this we need to select the appropriate
VLP correlation so that the testing point can
be matched in the VLP/IPR system. This is
done in the VLP/IPR matching section where
various VLP correlations are matched to select
the best one [13-15]. The results of the VLP
correlation comparison is shown in the
Figure 1.12
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Fig. 1.8: Initial PBU Test.
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Fig. 1.9: Initial Flow After Flow Test.

Parameters Values Units
Permeability 31.14 md

Skin 3.17

p* 6070.0 Psia
Final Build Up Pr 6042.0 Psia

C 0.00007914 MMscfd/Psi”2
n 0.8053

AOF 98.16 MMscfd

Fig. 1.10: Initial Reservoir Properties.
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Fig 1.12: Tubing Correlation Comparisons (Pressure Vs Measured Depth).

The above figure shows that the Petroleum
Experts (PE) 5 correlation is the best one
which matches the required bottom hole
flowing pressure. Using the PE 5 tubing
correlation the VLP is generated and is being

matched with the generated IPR and the
intersection point is matched the entered test
point as shown in the Figure 1.13. This
matching shows the validity of our prosper
model [16, 17].
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Fig. 1.13: VLP / IPR System Match.

Well Scenario (Latest PBU Match)
The well is actually gas condensate well and is
producing the gas along with condensate and

very little amount of water as shown in the
production performance history in the figure
below.

20 Production from Upper 5000
Sands reservoir Tail assembly cut from casing sub ,
180 |/ = Fish 11.5 meters below the cut point. 4500

FWHP (Psig)

31-Dec-09

31-Jan-10  28-Feb-10 31-Mar-10

30-Apr-10

31-May-10  30-Jun-10 31-Jul-10 31-Aug-10

Fig. 1.14: Production Performance History.

The above figure shows the various types of
parameters which are received as output from
well. The water cut and GOR has remained
fairly constant but wellhead pressure has been
decreasing due to decrease in reservoir
pressure during the well’s life. The last PBU
test conducted on the well shows that reservoir

pressure has declined from the initial pressure
of 6042 psia to 5414.7 psia. According to the
current reservoir conditions, the existing
VLP/IPR system has been generated using the
same procedure as mentioned in the initial
well scenario section and the result is shown in
the Figure 1.15
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Fig. 1.15: Existing VLP/IPR Match.

AIM OF PROJECT AND DECISION
TASK

What decision should be taken from available
options to optimize the production of the well
when reservoir pressure has been declined?

Based on the latest build up match we have to
choose the best decision out of various
available options to enhance the productivity
by the help of Prosper. It is therefore different
parameters need to be changed to measure
their effect on productivity which we normally

Change in wellhead flowing pressure.

e Change of tubing size through work over
job.

e Change in water gas ratio.

e Change in condensate gas ratio

e Scaling problem in the tubing

Sensitivity Analysis of Wellhead Flowing
Pressure (FWHP)

The results for various sensitivities of “Top
node pressure” or FWHP are shown in Figure
1.16 and the values are tabulated in the

call sensitivity analysis. Some of these Table 1.1.
parameters are discussed below:
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Fig. 1.16: Sensitivity Analysis of Wellhead Flowing Pressure (System Plot).
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Table 1.1: Iterative Results of Wellhead Flowing Pressure.

S.No FWHP GAS RATE (MMSCFD)
0 3000 23.154
1 3150 20.643
2 3250 18.712
3 3350 16.443
4 3430 13.828

As the FWHP decreases, the Gas rate is
increasing and the maximum rate is obtained

Sensitivity Analysis of Tubing Size
Various sensitivities have been run using

at the lowest FWHP which is 23.154 various tubing sizes and their results are
MMSCFD. summarized in the Figure 1.17 and the Table
1.2, respectively.
[ e i 1:Tubing/Fipe Dismeter :“tﬂ:”;i‘ﬁ
1 ]
Gas Rate (MMscliday)
Top Node Pressure 2430.00 (psia) Inflow Type Single Branch
oo meet ot 60 Conpion Gl
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" T T s s
TEMHE[E:?E':; Fes Solutio tom Node compesien PE':S:‘T:: giiﬁ;"r;:‘. "13‘ [MMscq
Cn;:, ::sl Lefi-Hand Inter Allow . ) RE*YGHPI;E;LIE‘ mw: ;;-',i.a:w_
Fig. 1.17: Sensitivity Analysis of Tubing Size (System Plot).
Table 1.2: Iterative Results of Tubing Size.
S.No Tubing Size (inches) Gas Rate (MMSCFD)
0 2.441 7.848
1 2.992 11.165
2 3.661 14.045

The above results show that as the tubing size
is increasing, more gas is produced at the
surface. This is due to the fact that the larger
tubing size has fewer pressure losses.

Sensitivity Analysis on Water Gas Ratio

Various sensitivities have been run at different
WGR and their results are summarized in the
Figure 1.18 and the Table 1.3 respectively:

JoOST (2014) 12-24 © STM Journals 2014. All Rights Reserved

Page 21



Journal of Offshore Structure and Technology
Volume 1, Issue 1

]

r
_—

STM JOURNALS

[ =07 Varisbles
TWaler Ga: Ratio (STEMINsS
4581
B
E
o L= I St
5
:
| B s
2

I == H )

24 14128 2545 3767 R

[ Gas Rate_(MMsch/day) ]

FVT Mathed Eq. of Stats Top Node Pressure 2420.00 (psis)
e Bottom Measured Depth 22950 (m)
Bottom True Vertical Depth 2261.0 (m)
Surface Equipment Carelatio
Arificial Lift
Vet Corelatio <5038
U Type Vertical Lift Conelati 55038 1.00
Tem [P'E"'ﬁ‘fﬂl Fressure anly Lo ‘:‘I"‘[“r_' a:e Batiom Compacticn Permesbility Reducti o
Emperature Madel EftHeng Imerecio Absolute Open 45,578 (MMscf
Comoanv muet - -

Fig. 1.18: Sensitivity Analysis on Water Gas Ratio (System Plot).

Table 1.3: Iterative Results on Water Gas Ratio.

S.No

WGR (STB/MMSCF)

Gas Rate (MMSCFD)

0 2.03

14.081

1 3.03

13.829

2 4.03

13.643

It can be clearly observed from the above
results that there is not such significant effect
of WGR on production rate which is also clear
from the production history performance
shown in the Figure 1.14

Sensitivity Analysis on GOR:

Various sensitivities have been run at different
GOR and their results are summarized in the
Figure 1.19 and the Table 1.4 respectively:
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Table 1.4: Iterative Results on GOR.

S.No GOR (SCF/STB) Gas Rate (MMSCFD)

0 8190 11.093

1 10190.6 13.065

2 12190 14.229

3 18190 16.307
The above results show that with increasing Sensitivity Analysis on Tubing Roughness:
GOR the production rate is also increasing. Various sensitivities have been run at different

GOR and their results are summarized in the
Figure 1.20 and the Table 1.5, respectively:

ariables
1:Tubing Roughness [inches)
1
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Fig. 1.20: Sensitivity Analyses on Tubing Roughness (System Plot).
Table 1.5: Iterative Results on Tubing Roughness.
S.No Tubing roughness (inches) Gas Rate (MMSCFD)
0 0.0006 13.829
1 0.002 13.518
2 0.005 13.215
3 0.09 10.228
The above result shows the significance of If there is too much scaling then the rate is
scaling in the tubing. reduced dramatically.
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CONCLUSION

Keeping the all above study in view, it is
concluded that current well has less potential
of productivity. GOR and water cut has no
effect on the well because its liquid drop out is
less than 12%, due to that it is not possible to
change the reservoir pressure by alternative
energy. Ultimate option is to change the
wellhead pressure. Changing tubing size can
be best option too but it is not economical
feasible. Corrosion would be effective if and
only if scaling is too high.
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