Open Access Open Access  Restricted Access Subscription or Fee Access

Advanced nanosized polymer composites with oxides of TiO2 and ZnO (review)

М.M. Zahornyi, O.M. Lavrynenko, O.Yu. Pavlenko, A.I. Ievtushenko

Abstract


Тhis study discusses recent advances in photocatalytic applications of multifunctional oxide nanocomposites with polymers for the treatment of different pollutants from the water. The analysis of literature in the chapters makes it possible to single out the polymers and nanocomposites that are most promising from the point of developing new technologies. It is shown that composite materials containing TiO2 and ZnO after additional studies can be recommended for self-cleaning protective and decorative coatings, generation of chemical fuels, etc. The ability of materials to shield the UV component of light is of interest for building glass structures.


Keywords


Nanocomposite, NPs, properties, polymer, conductivity, structure, TiO2, ZnO.

Full Text:

PDF

References


Han, T. H., Parveen, N., Shim, J. H., Nguyen, A. T. N., Mahato, N., & Cho, M. H. (2018). Ternary Composite of Polyaniline Graphene and TiO2 as a Bifunctional Catalyst to Enhance the Performance of Both the Bioanode and Cathode of a Microbial Fuel Cell. Industrial & Engineering Chemistry Research, 57(19), 6705–6713. doi:10.1021/acs.iecr.7b05314 .

Jumat, N. A., Wai, P. S., Ching, J. J., & Basirun, W. J. (2017). Synthesis of Polyaniline- TiO2 Nanocomposites and Their Application in Photocatalytic Degradation. Polymers and Polymer Composites, 25(7), 507–514. doi:10.1177/096739111702500701 .

Meat processing technology for small-to medium-scale producers. Cleaning and sanitation in meat plants: http://www.fao.org/docrep/010/ai407e/ai407e26.htm. Accessed date on 04/02/2014.

Brooms, T. J., Otieno, B., Onyango, M. S., & Ochieng, A. (2017). Photocatalytic degradation of P-Cresol using TiO2/ZnO hybrid surface capped with polyaniline. Journal of Environmental Science and Health, Part A, 53(2), 99–107. doi:10.1080/10934529.2017.1377583.

Ghazzal, M. N., Kebaili, H., Joseph, M., Debecker, D. P., Eloy, P., De Coninck, J., & Gaigneaux, E. M. (2012). Photocatalytic degradation of Rhodamine 6G on mesoporous titania films: Combined effect of texture and dye aggregation forms. Applied Catalysis B: Environmental, 115-116, 276–284. doi:10.1016/j.apcatb.2011.12.016.

Luna, A. L., Dragoe, D., Wang, K., Beaunier, P., Kowalska, E., Ohtani, B., Colbeau-Justin, C. (2017). Photocatalytic Hydrogen Evolution Using Ni–Pd/TiO2: Correlation of Light Absorption, Charge-Carrier Dynamics, and Quantum Efficiency. The Journal of Physical Chemistry C, 121(26), 14302–14311. doi:10.1021/acs.jpcc.7b01167.

Morphological, spectral and toxicological features of new composite material of titanium nanodioxide with nanosilver for use in medicine and biology/ M.M. Zahornyi, O.P. Yavorovsky, V.M. Riabovol, N.I. Tyschenko, T.F. Lobunets, T.V. Tomila, O.V. Shirokov, A.V. Ragulya, Ye.M. Anisimov// Medicni perspektivi. –2022. – Vol.27(1). – P.152-159.

Pankivskka, Yu. B., Biliavska, L.O., Povnitsa, O. Yu., Zagornyi, M.M., Ragulia, A.V., Kharchuk, M.S., Zagorodnya, S.D. (2019). Antiadenoviral activity of titanium dioxide nanoparticles. Microbiology Journal (Ukraine), 81(5), 73-84. doi: https://doi.org/10.15407/microbiolj81.05.073

Li, J., & Wu, N. (2015). Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catalysis Science & Technology, 5(3), 1360–1384. doi:10.1039/c4cy00974f

M.M. Zahornyi, N.I. Tyschenko, A.V. Ragulya, O.M. Lavrynenko, A.M. Kasumov, A.K. Melnyk, O.V. Kuzma, A.I. Ievtushenko. Optical and photocatalytic activity of polyaniline/TiO2 composites with anatase and P25 nanoparticles // Journal of Nano-And Electronic Physics. – 2021. – Vol.13, N5, 05034-5, DOI: 10.21272/jnep.13(5).05034.

Ghosh, S., Kouamé, N. A., Ramos, L., Remita, S., Dazzi, A., Deniset-Besseau, A., Remita, H. (2015). Conducting polymer nanostructures for photocatalysis under visible light. Nature Materials, 14(5), 505–511. doi:10.1038/nmat4220.

Wu R., Song J., Ji X., Tian G., Zhang F. (2023). Constructions of Fe3O4/HAp/Au nanohybrids with multifunctional structure for efficient photocatalysis and environmental remediation of organic dyes//Journal of Molecular Structure, 1278, 134908. https://doi.org/10.1016/j.molstruc.2023.134908

O.M. Lavrynenko, M.M. Zahornyi, E. Paineau, O.Yu. Pavlenko, N.I. Tyschenko, O.I. Bykov. Characteristic of TiO2&Ag0 nanocomposites formed via transformation of metatitanic acid and titanium (IV) isopropoxide// Materials Today: Proceedings. – 2022. – V.62. – P. 7664-7669 - https://doi.org/10.1016/j.matpr.2022.03.002

Khalyavka, T.A., Shapovalova, M.V., Shcherban, N.D. et al. Photocatalytic activity of TiO2 mechanochemically modified with carbon and/or thiourea under UV and visible irradiation in the destruction of Safranine T and Rifampicinum. Reac Kinet Mech Cat 135, 3393–3409 (2022). https://doi.org/10.1007/s11144-022-02317-4

Zahornyi M., Sokolsky G. Nanosized Titania Composites for Reinforcement of Photocatalysis and Photoelectrocatalysis//Academic Cambridge Scholars Publishing.- 2022, P. 275 (ISBN: 978-1-5275-7786-2)

O.M. Lavrynenko, M.M. Zahornyi, V.V. Vember, O.Yu. Pavlenko, T.F. Lobunets, O.F, Kolomys, O.Yu. Povnitsa, L.O. Artiukh, K.S. Naumenko, S.D. Zahorodnia, І.L. Garmasheva Nanocomposites based on cerium, lanthanum, and titanium oxides doped with silver for biomedical application // Condens. Matter (MDPI).– 2022.–Vol. 7(3), https://doi.org/10.3390/condmat7030045

Heshmatpour, F., & Zarrin, S. (2017). A probe into the effect of fixing the titanium dioxide by a conductive polymer and ceramic on the photocatalytic activity for degradation of organic pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 346, 431–443. doi:10.1016/j.jphotochem.2017.06.017 .

Radoičić, M., Ćirić-Marjanović, G., Spasojević, V., Ahrenkiel, P., Mitrić, M., Novaković, T., & Šaponjić, Z. (2017). Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites. Applied Catalysis B: Environmental, 213, 155–166. doi:10.1016/j.apcatb.2017.05.023 .

Gnanaprakasam, A., Sivakumar, V. M., & Thirumarimurugan, M. (2015). Influencing Parameters in the Photocatalytic Degradation of Organic Effluent via Nanometal Oxide Catalyst: A Review. Indian Journal of Materials Science, 1–16. doi:10.1155/2015/601827.

Burunkova, Y. É., Denisyuk, I. Y., & Sem’ina, S. A. (2013). Structural self-organization mechanism of ZnO nanoparticles in acrylate composites. Journal of Optical Technology, 80(3), 187. doi:10.1364/jot.80.000187.

Burunkova, J. A., Denisyuk, I. Y., Arefieva, N. N., & Semina, S. A. (2011). Influence of SiO2Nanoaddition on the Self-Organization via UV-Polymerization of Acrylate Nanocomposites. Molecular Crystals and Liquid Crystals, 536(1), doi:10.1080/15421406.2011.538360 .

Gerasin, V. A., Antipov, E. M., Karbushev, V. V., Kulichikhin, V. G., Karpacheva, G. P., Talroze, R. V., & Kudryavtsev, Y. V. (2013). New approaches to the development of hybrid nanocomposites: from structural materials to high-tech applications. Russian Chemical Reviews, 82(4), 303–332. doi:10.1070/rc2013v082n04abeh004322 .

Chen, H.-J., Wang, L., Chiu, W.-Y., & Don, T.-M. (2008). Synthesis of nanosized PAA/titania hybrid composites—Experiment and modeling. Ceramics International, 34(3), 467–477. doi:10.1016/j.ceramint.2006.11.013.

Zhang, J., Luo, S., Gui, L., & Tang, Y. (1996). Poly(Methyl Methacrylate)-Titania Hybrid Materials by Sol-Gel Processing. MRS Proceedings, 435. doi:10.1557/proc-435-173 .

Sun, X., Chen, X., Fan, G., & Qu, S. (2010). Preparation and the optical nonlinearity of surface chemistry improved titania nanoparticles in poly(methyl methacrylate)–titania hybrid thin films. Applied Surface Science, 256(8), 2620–2625. doi:10.1016/j.apsusc.2009.11.006.

Wang, Y., Zhang, D., Shi, L., Li, L., & Zhang, J. (2008). Novel transparent ternary nanocomposite films of trialkoxysilane-capped poly(methyl methacrylate)/zirconia/titania with incorporating networks. Materials Chemistry and Physics, 110(2-3), 463–470. doi:10.1016/j.matchemphys.2008.03.006.

Ren, H., Koshy, P., Chen, W.-F., Qi, S., & Sorrell, C. C. (2017). Photocatalytic materials and technologies for air purification. Journal of Hazardous Materials, 325, 340–366. doi:10.1016/j.jhazmat.2016.08.072 .

Arora R., Srivastav A., Utam M. K. (2012). Polyaniline based polymeric nanocomposite containing TiO2 and SnO2 for environmental and energy applications. Internationsl journal of modern engineering research, 2, 2384 – 2395.

Volkov, S.V., Kovalchuk, E., Ogenko, V., Reshetnyak O. (2008). [Nanochemistry of nanosystems nanomaterials]. K.: Naukova Dumka (in Russian).

Liu, Z., Zhou, J., Xue, H., Shen, L., Zang, H., & Chen, W. (2006). Polyaniline/TiO2 solar cells. Synthetic Metals, 156(9-10), 721–723. doi:10.1016/j.synthmet.2006.04.001.

Li, Q., Zhang, C., & Li, J. (2010). Photocatalysis and wave-absorbing properties of polyaniline/TiO2 microbelts composite by in situ polymerization method. Applied Surface Science, 257(3), 944–948. doi:10.1016/j.apsusc.2010.07.098 .

Phang, S. W., Tadokoro, M., Watanabe, J., & Kuramoto, N. (2008). Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon nanotubes. Synthetic Metals, 158(6), 251–258. doi:10.1016/j.synthmet.2008.01.012

Rajakani, P., & Vedhi, C. (2015). Electrocatalytic properties of polyaniline–TiO2 nanocomposites. International Journal of Industrial Chemistry, 6(4), 247–259. doi:10.1007/s40090-015-0046-8

Chaturmukha, V. S., Naveen, C. S., Rajeeva, M. P., Avinash, B. S., Jayanna, H. S., & Lamani, A. R. (2016). Dielectrical properties of PANI/TiO2 nanocomposites. doi:10.1063/1.4947720.

Zhang, L., Liu, P., & Su, Z. (2006). Preparation of PANI–TiO2 nanocomposites and their solid-phase photocatalytic degradation. Polymer Degradation and Stability, 91(9), 2213–2219. doi:10.1016/j.polymdegradstab.2006.01.002

Zhang, L., Wan, M., & Wei, Y. (2005). Polyaniline/TiO2 microspheres prepared by a template-free method. Synthetic Metals, 151(1), 1–5. doi:10.1016/j.synthmet.2004.12.021

M. Abdelhamid Shahat and Ahmed Ghitas. Titanium Dioxide (TiO2) Concentration-dependent Photovoltaic Cells Performance of PAni-TiO2 Nanocomposite. 2022 IOP Conf. Ser.: Mater. Sci. Eng. 1269 012009.

Zagorny, M., Bykov, I., Melnyk, A., Lobunets, T., Zhygotsky, A., Pozniy, A., Ragulya, A. (2014). Surface Structure, Spectroscopic and Photocatalytic Activity Study of Polyaniline/TiO2 Nanocomposites. J. Chem. Chem. Eng, 8, 118—127. doi:10.17265/1934-7375/2014.02.004

Phang, S. W., Tadokoro, M., Watanabe, J., & Kuramoto, N. (2008). Microwave absorption behaviors of polyaniline nanocomposites containing TiO2 nanoparticles. Current Applied Physics, 8(3-4), 391–394. doi:10.1016/j.cap.2007.10.022

Song, X. L., Yan, C. Y., Huang, S. T., Zhang, M. W., Geng, B. Y., & Meng, R. B. (2013). Synthesis of Mesoporous Polyaniline-TiO2 Composite Microspheres for Gas Sensing Application. Advanced Materials Research, 750-752, 1098–1103. doi:10.4028/www.scientific.net/amr.750-752.1098.

Milani Moghaddam, H., & Nasirian, S. (2014). Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions. Applied Surface Science, 317, 117–124. doi:10.1016/j.apsusc.2014.08.062 .

Choquette-Labbé, M., Shewa, W., Lalman, J., & Shanmugam, S. (2014). Photocatalytic Degradation of Phenol and Phenol Derivatives Using a Nano-TiO2 Catalyst: Integrating Quantitative and Qualitative Factors Using Response Surface Methodology. Water, 6(6), 1785–1806. doi:10.3390/w6061785 .

Harada, H., Onoda, A., Uematsu, T., Kuwabata, S., & Hayashi, T. (2016). Photocatalytic Properties of TiO2 Composites Immobilized with Gold Nanoparticle Assemblies Using the Streptavidin–Biotin Interaction. Langmuir, 32(25), 6459–6467. doi:10.1021/acs.langmuir.6b01073 .

Ievtushenko, A., Karpyna, N., Eriksson, J., Tsiaoussis, I. et al. (2018). Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD of different substrate temperature. Superlattices and Microstructures, 117, 121-131. https://doi.org/10.1016/j.spmi.2018.03.029

Smirnov O.E., Dzhagan V., Kovalenko M., Gudymenko O., Dzhagan V., Mazur N., Isaieva [et al.]. ZnO and Ag NP-decorated ZnO nanoflowers: green synthesis using Ganoderma lucidum aqueous extract and characterization//RSC Advances. -2023, Issue1.- P. 756-763. doi: 10.1039/D2RA05834K

Myroniuk L., Myroniuk D., Karpyna V., Bykov O., Garmasheva I., Povnitsa O., Artiukh L., Naumenko K., Zahorodnia S, Ievtushenko A. The Biological Activity of ZnO Nanostructures Doped by Mg and Co / // Acta Physica Polonica A. – 2022. – V.142, N5. – P. 651-656. Doi: 10.12693/APhysPolA.142.651

А.М. Kаsumov, V.V. Strelchuk, О.F. Kolomys, О.І. Bykov, V.О. Yukhymchuk, М.М. Zahornyi, K.А. Kоrotkov, V.М. Kаravaieva, S.F. Kоrychev, А.І. Ievtushenko. Properties of nanosized ΖnO:Ho films deposited using explosive evaporation// Semiconductor Physics, Quantum Electronics & Optoelectronics, 2021. V. 24, No 2. P. 139-147. https://doi.org/10.15407/spqeo24.02.139

Dhole, S. G., Dake, S. A., Prajapati, T. A., & Helambe, S. N. (2018). Effect of ZnO Filler on Structural and Optical Properties of Polyaniline-ZnO Nanocomposites. Procedia Manufacturing, 20, 127–134. doi:10.1016/j.promfg.2018.02.018

Singh, N. S., Kumar, L., Kumar, A., Vaisakh, S., Singh, S. D., Sisodiya, K., … Anita. (2017). Fabrication of zinc oxide/ polyaniline (ZnO/PANI) heterojunction and its characterisation at room temperature. Materials Science in Semiconductor Processing, 60, 29–33. doi:10.1016/j.mssp.2016.12.021

Mohsen, R.M., Morsi Samir, M.M., El-sheriff, H.M. (2019). Electrical, thermal, morphological, and antibacterial studies of synthesized polyaniline/zinc oxide nanocomposites. Polymer Bulletin, (Springer), 76, 1-21.

Muhamad, W.N. et al. (2015). Synthesis of polyaniline/ZNO (PANI/ZNO) nanocomposite using interface polymerization method and its photodegradation test on rhodamine B under Visible light Irradiation. Molekul, 10(2). 121-128 (Jenderal Soedirman University, ISSN: 1907-9761 (Print); 2503-0310 (Online)

Mansor, E.S., El Shall, F.N. & Radwan, E.K. Simultaneous decolorization of anionic and cationic dyes by 3D metal-free easily separable visible light active photocatalyst. Environ Sci Pollut Res (2022). https://doi.org/10.1007/s11356-022-22838-850.

Mochane, M.J.; Motloung, M.T.; Mokhena, T.C.; Mofokeng, T.G. Morphology and Photocatalytic Activity of Zinc Oxide Reinforced Polymer Composites: A Mini Review. Catalysts 2022, 12, 1439. https:// doi.org/10.3390/catal12111439.

Biju, R., Ravikumar, R., Thomas, C. et al. Enhanced photocatalytic degradation of Metanil Yellow dye using polypyrrole-based copper oxide–zinc oxide nanocomposites under visible light. J Nanopart Res 24, 117 (2022). https://doi.org/10.1007/s11051-022-05495-3.




DOI: https://doi.org/10.37591/jonsnea.v12i3.1372

Refbacks

  • There are currently no refbacks.