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Abstract 
The optimization of computational performance along with the topology optimization of 

structures is the main focus of this study. The computational performance of the program is 

enhanced using two search engines in parallel. The search process is done using a least pop 

size which has reduced the number of computations required to optimize the objective 

function. The geometry can be exactly represented using isogeometric basis functions where 

the same basis is used to represent the geometry and calculate the response of the structure. 

Isogeometric analysis is used to conduct this study along with the metaheuristic swarm 

intelligence algorithms such as Firefly and Aqua search algorithms. The optimization is 

performed using evolutionary optimization process and metaheuristics have consistently been 

in use to optimize the distribution of material within the design domain. Few basic problems 

are optimized in this study and the results are compared. This study aims to make an attempt 

to reduce the computational effort and use newer ways to perform the topology optimization of 

continuum structures. 
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INTRODUCTION 
The present study is focused on the application 

of parallel computing to perform isogeometric 

topology optimization of continuum structures 

using metaheuristic swarm intelligence 

algorithms. Isogeometric analysis was first 

introduced in the year 2005, who applied 

NURBS in the context of structural mechanics, 

where in the basic functions are complete with 

respect to the affine transformations which 

means that the rigid body motions and 

constant strain states are exactly represented 

[1]. Few numerical examples are solved to 

validate the new method of analysis of 

problems governed by partial differential 

equations. Adeli, in his paper on automated 

design of high rise buildings have used 

artificial intelligence based algorithms on a 

parallel machine [2]. The civil engineering 

structures as opposed to the other engineering 

models involve large number of degrees of 

freedom and are massive in nature. To 

automate such a design, newer computational 

models are created exploring new computing 

paradigms. A neural dynamics model for 

optimal design of structures by integrating the 

penalty method is used. Later, a non-linear 

neural dynamics model for optimization of 

large space structures is used. In another 

paper, Adeli reviews neural network articles 

on structural engineering, and construction 

engineering and management [3]. The articles 

on structural health monitoring, damage 

assessment, and structural control are 

reviewed. Articles written in other areas of 

civil engineering including environmental 

engineering, water resources engineering and 

transportation engineering are also reviewed. 

Sahithi used parallel search to optimize the 

arch truss structures using Evolutionary 

algorithms [4]. The weight of the structure is 

reduced when two engines were used instead 

of one engine. Aqua search swarm intelligence 

algorithm is used to conduct the present study 

[5]. Next part of the paper discusses the 

theoretical background to perform this study, 

the analysis and results, the conclusions and 

further study respectively. 
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Objectives of This Study 

1. To use two search engines in parallel and 

perform the isogeometric topology 

optimization of continuum structures using 

swarm intelligence metaheuristic 

algorithms. 

2. To minimize the weight of the structure, 

subject to the constraints of stress. 

 

Scope of the Study 

1. The study is limited to linear static elastic 

analysis only. The Hooke’s law is valid. 

2. The study does not include buckling 

analysis. 

 

THEORETICAL BACKGROUND 

This section provides the necessary 

formulation required to complete this study. 

This is discussed in the following sub-sections 

given below: 

1. NURBS Formulation, and  

2. Parallel Computing. 

 

NURBS Formulation 

Basis Functions [6]  

𝑁𝑖,0(𝜉) = {
1 𝑖𝑓 𝜉𝑖  ≤  𝜉 < 𝜉𝑖+1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

For p=1, 2, 3, …. They are defined by: 

𝑁𝑖,𝑝(𝜉) =  
𝜉 − 𝜉𝑖

𝜉𝑖+𝑝 − 𝜉𝑖
𝑁𝑖,𝑝−1(𝜉)

+ 
𝜉𝑖+𝑝+1 − 𝜉

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
𝑁𝑖+1,𝑝−1(𝜉) 

 

This is referred to as the Cox-de Boor 

recursion formula. 

 

Derivatives of B-Spline Basis Functions 
𝑑

𝑑𝑥
𝑁𝑖,𝑝(𝜉) =  

𝑝

𝜉𝑖+𝑝 − 𝜉𝑖
𝑁𝑖,𝑝−1(𝜉)

−
𝑝

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
𝑁𝑖+1,𝑝−1(𝜉) 

 

Generalize to Higher Order Derivatives [5]  

𝑑𝑘

𝑑𝑘𝜉
𝑁𝑖,𝑝(𝜉)

=  
𝑝

𝜉𝑖+𝑝 − 𝜉𝑖
(

𝑑𝑘−1

𝑑𝑘−1𝜉
𝑁𝑖,𝑝−1(𝜉))

−
𝑝

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
(

𝑑𝑘−1

𝑑𝑘−1𝜉
𝑁𝑖+1,𝑝−1(𝜉)) 

B-Spline Curves 

𝐶(𝜉) =  ∑𝑁𝑖,𝑝(𝜉)𝐵𝑖

𝑛

𝑖=1

 

 
B-Spline Surfaces: 

𝑆(𝜉, 𝜂) =  ∑∑𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)

𝑚

𝑗=1

𝐵𝑖,𝑗

𝑛

𝑖=1

 

 
B-Spline Solids: 

𝑆(𝜉, 𝜂, 𝜁)

=  ∑∑ ∑ 𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝐿𝑘,𝑟(

𝑙

𝑘=1

𝑚

𝑗=1

𝜁) 𝐵𝑖,𝑗,𝑘

𝑛

𝑖=1

 

 

NURBS Basis Function 

With a given projective B-spline curve and its 
associated projective control points in hand, 
the control points for the NURBS curve are 
obtained by using the following relations: 

(𝐵𝑖)𝑗 =
(𝐵𝑖

𝑤)𝑗

𝑤𝑖
 𝑗 = 1,2… , 𝑑 

𝑤𝑖 = (𝐵𝑖
𝑤)𝑗𝑑+1 

 
NURBS basis is given by:  
For NURBS Curve:  

𝑅𝑖
𝑝(𝜉) =  

𝑁𝑖,𝑝(𝜉)𝑤𝑖

∑ 𝑁𝑖,𝑝(𝜉)𝑤𝑖
𝑛
𝑖=1

 

𝐶(𝜉) =  ∑𝑅𝑖
𝑝(𝜉)𝐵𝑖

𝑛

𝑖=1

 

This is identical to the B-Splines. 
 
For NURBS Surfaces: 

𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂) =  

𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝑤𝑖,𝑗

∑ ∑ 𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝑤𝑖,𝑗
𝑚
𝑗=1

𝑛
𝑖=1

 

 
For NURBS Solids: 

𝑅𝑖,𝑗,𝑘
𝑝,𝑞,𝑟(𝜉, 𝜂, 𝜁)

=  
𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝐿𝑘,𝑟(𝜁)𝑤𝑖,𝑗,𝑘

∑ ∑ ∑ 𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝐿𝑘,𝑟(𝜁)𝑤𝑖,𝑗,𝑘
𝑙
𝑘=1

𝑚
𝑗=1

𝑛
𝑖=1

 

 
Derivatives of NURBS:  
Apply the quotient rule,  

𝑑

𝑑𝜉
𝑅𝑖

𝑝(𝜉) =  𝑤𝑖

𝑊(𝜉)𝑁𝑖,𝑝
′ (𝜉) − 𝑊′(𝜉)𝑁𝑖,𝑝(𝜉)

(𝑊(𝜉))2
 

𝑤ℎ𝑒𝑟𝑒 𝑁𝑖,𝑝
′ (𝜉) =  

𝑑

𝑑𝜉
𝑁𝑖,𝑝(𝜉) 𝑎𝑛𝑑 𝑊′(𝜉)

=  ∑𝑁𝑖,𝑝
′

𝑛

𝑖=1

(𝜉)𝑤𝑖 
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For Higher Order Derivatives of NURBS 

Basis Functions [5]:  

𝐴𝑖
(𝑘)

(𝜉) =  𝑤𝑖

𝑑𝑘

𝑑𝜉𝑘
𝑁𝑖,𝑝(𝜉) , (𝑛𝑜 𝑠𝑢𝑚 𝑜𝑛 𝑖) 

We do not sum on the repeated index, and let,  

𝑊(𝑘)(𝜉) =
𝑑𝑘

𝑑𝜉𝑘
𝑊(𝜉) 

Higher order derivatives can be expressed in 

terms of the lower order derivatives as:  

𝑑𝑘

𝑑𝜉𝑘
𝑅𝑖

𝑝(𝜉)

=  
𝐴𝑖

(𝑘)
(𝜉) − ∑ (

𝑘
𝑗
)𝑘

𝑗=1 𝑊(𝑗)(𝜉)
𝑑(𝑘−𝑗)

𝑑𝜉(𝑘−𝑗) 𝑅𝑖
𝑝
(𝜉) 

𝑊(𝜉)
 

𝑤ℎ𝑒𝑟𝑒 (
𝑘
𝑗
) =  

𝑘!

𝑗! (𝑘 − 𝑗)!
 

 

Parametric to Parent Mapping 

𝜉 =
1

2
[(𝜉𝑖+1 − 𝜉𝑖)𝜉 + (𝜉𝑖+1 − 𝜉𝑖)] 𝜂 =

1

2
[(𝜂𝑖+1 − 𝜂𝑖)�̂� + (𝜂𝑖+1 − 𝜂𝑖)]  

𝐽�̅�,�̅� =
1

4
(𝜉𝑖+1 − 𝜉𝑖)(𝜂𝑖+1 − 𝜂𝑖) 

 

Parametric Space to Physical Space [6]:  

X=N1M1X1+N2M1X2+N2M2X3+N1M2X4 Y= 

N1M1Y1+N2M1Y2+N2M2Y3+N1M2Y4 

[
 
 
 
 
𝜕𝑁

𝜕𝜉
𝜕𝑁

𝜕𝜂]
 
 
 
 

=

[
 
 
 
 
𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉
𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂]
 
 
 
 

[
 
 
 
𝜕𝑁

𝜕𝑥
𝜕𝑁

𝜕𝑦]
 
 
 
 

𝜕𝑥

𝜕𝜉
=

𝜕

𝜕𝜉
[𝑁1𝑀1𝑁2𝑀1𝑁2𝑀2𝑁1𝑀2][𝑥1𝑥2𝑥3𝑥4]

𝑇 

 
𝜕𝑥

𝜕𝜂
=

𝜕

𝜕𝜂
[𝑁1𝑀1𝑁2𝑀1𝑁2𝑀2𝑁1𝑀2][𝑥1𝑥2𝑥3𝑥4]

𝑇 

 
𝜕𝑦

𝜕𝜉
=

𝜕

𝜕𝜉
[𝑁1𝑀1𝑁2𝑀1𝑁2𝑀2𝑁1𝑀2][𝑦1𝑦2𝑦3𝑦4]

𝑇 

𝜕𝑦

𝜕𝜂
=

𝜕

𝜕𝜂
[𝑁1𝑀1𝑁2𝑀1𝑁2𝑀2𝑁1𝑀2][𝑦1𝑦2𝑦3𝑦4]

𝑇 

 

Strain Displacement Matrix 

 𝐵 =  

[
 
 
 
 
𝜕𝑁

𝜕𝑥
0

0
𝜕𝑁

𝜕𝑦

𝜕𝑁

𝜕𝑦

𝜕𝑁

𝜕𝑥]
 
 
 
 

  𝜖 =

[
 
 
 
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥]
 
 
 
 

 [

𝜕𝑢

𝜕𝑥
𝜕𝑢

𝜕𝑦

] =
1

|𝐽|
[

𝐽22 −𝐽12

−𝐽21 𝐽11
] [

𝜕𝑢

𝜕𝜉

𝜕𝑢

𝜕𝜂

] 

𝜖 = 𝐴𝐺 = 
1

|𝐽|
[
𝐽22

0
−𝐽12

0

0
−𝐽21

0
𝐽11

−𝐽21 𝐽11 𝐽22 −𝐽12

]

[
 
 
 
 
 
 
 
 
𝜕𝑢

𝜕𝜉
𝜕𝑢

𝜕𝜂
𝜕𝑣

𝜕𝜉
𝜕𝑣

𝜕𝜂]
 
 
 
 
 
 
 
 

 

For Element 1 [4]:  

[
 
 
 
 
 
 
 
 
𝜕𝑢

𝜕𝜉
𝜕𝑢

𝜕𝜂
𝜕𝑣

𝜕𝜉
𝜕𝑣

𝜕𝜂]
 
 
 
 
 
 
 
 

= [

4𝜂 − 2 0
4𝜉 − 2 0

2 − 4𝜂 0
−4𝜉 0

0 4𝜂 − 2
0 4𝜉 − 2

0 2 − 4𝜂
0 −4𝜉

4𝜂 0
4𝜉 0

−4𝜂 0
2 − 4𝜉 0

0 4𝜂
0 4𝜉

0 −4𝜂
0 2 − 4𝜉

]

[
 
 
 
 
 
 
 
𝑞1

𝑞2
𝑞3

𝑞4
𝑞5

𝑞6
𝑞7

𝑞8]
 
 
 
 
 
 
 

 

Plane Stress: 

𝐷 =  
𝐸

(1 − 𝜐2)
[
1 𝜐 0
𝜐 1 0
0 0 (1 − 𝜐)/2

] 

 

Algorithm to Perform the IGA Analysis 

The algorithm to perform the isogeometric 

analysis of a two dimensional plate structure 

carrying in-plane loading: 

1. Determine NURBS coordinates (𝜉𝑖, 𝜉𝑖+) ∗

(𝜂𝑗 , 𝜂𝑗+1) using elRangeU and elRangeV. 

2. Store the connectivity of the element in an 

array names sctrB (of size nn). 

3. Define strain displacement matrix B of size 

(1, 2*nn). 

4. Set ke=0. 

5. Loop over Gauss points (GPs) {𝜉𝑗
′, 𝜔𝑗

′} j=1, 

2,…, ngp where, ngp is the number of gauss 

points. 

a) Compute parametric coordinate𝜉 

corresponding to 𝜉𝑗
′. 

b) Compute |𝐽𝜉′| corresponding to the 

equations. 

c) Compute the derivatives of the shape 

functions 𝑅𝑤𝜉
𝑒  and 𝑅𝑤𝜂

𝑒  at point 𝜉, 𝜂. 

d) Compute 𝐽𝜉 using control points (sctr(:,e)) 

𝑅𝑤𝜉
𝑒  and 𝑅𝑤𝜂

𝑒 . 
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e) Find 𝐽𝜉
−1 and determinant |𝐽𝜉|. 

f) Compute the shape function derivatives 

𝑅𝑥 = 𝐽𝜉
−1[𝑅,𝜉

𝑇𝑅,𝜂
𝑇 ]. 

g) Use Rx to build the strain displacement 

matrix B. 

h) 𝑘𝑒 = 𝑘𝑒 + 𝐵𝑇𝐷𝐵|𝐽𝜉′||𝐽𝜂′|𝜔𝑗
′. 

6. End loop on gauss points. 

7. Assemble ke into global stiffness matrix KG. 

8. End loop over all the elements. 

 

The flowchart to develop the code in C++ is as 

shown below in Figure 1. 

 

No

Start

Initialise Pop size
Number of Iterations

Relative density Lower limit
Stress Lower Limit

Number of Parallel Engines
Aqua Search Parameters

Allowable Material

Generate Initial values 
of Relative Density

For Iteration = 1 to ITER

For I = 1 to N

For J = 1 to N

Calculate the Initial 
Objective Function

Compare 
Objective Function  
or Light Intensity

Ij > Ii

No

Yes

Perform Isogeometric Analysis
Check for Stress, Displacement

Check for Connectivity

Yes

No

1

2

3

6

5

4

Calculate the Objective Function

3

Reallocation based on Stress

Check for Connectivity 2

Perform IGA 

Next  J
Newer Distribution

Next  I

Next Iteration

Stop

End

1, 2

Yes

6

5

4

Convergence

No

Stop
Yes

 
Fig. 1: Showing the Flowchart to Use Parallel Search Engines and Perform Isogeometric Topology 

Optimization of Continuum Structures using Evolutionary Algorithms. 
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Parallel Computing  

The process of performing optimization can be 

improved using three ways [5]: 

1. Newer theories which can effectively 

perform the process of optimization. 

2. Better programs to efficiently use the 

hardware resources. 

3. Multicore processor computers having 

higher hardware configuration.  

 

“Optimization of large structures with 

thousands of members subjected to actual 

constraints of commonly used codes requires 

an inordinate amount of computer processing 

time and can be done only on multiprocessor 

super computers” [2]. This sentence clearly 

emphasizes the need for large computational 

power to perform the optimization of 

structures. High degree of parallel computing 

can be exploited using metaheuristic 

algorithms. The nature inspired swarm 

intelligence evolutionary algorithms such as 

Aqua Search, Firefly and so on have enormous 

potential to be used on multicore processor 

computers such as Dell T7910®, and Fujitsu 

Celsius R940®. Running a parallel computing 

program using evolutionary algorithms to 

optimize the need of computational power is a 

demanding task. The current analysis is done 

on Intel i7-6700, 3.5 GHz processor computer. 

The design variable is the relative density of 

each element. The present study uses two 

search engines in parallel to find the optimal 

distribution of material within the given design 

domain.  

ANALYSIS 

A cantilever plate 0.16 m×0.10 m as shown in 
the Figure 2 carries a point load of 1000 N acts 
at the centre of the right edge along X-
direction. The entire design domain is 
discretized into 693 nodes and 640 elements 
first order four noded quadrilateral elements in 
plane stress condition. The Young’s modulus 
of elasticity is taken as 200 GPa and the 
Poisson’s ratio is taken as 0.33. The weight 
density of the material is 78700 N/m3. The 
thickness of the plate is 0.010 m. The NURBS 
basis functions of first order are used here. The 
size of the Xi vector is equal to 37, and the 
size of the Eta vector is taken as 25. For the 
sake of symmetry, only half of the domain is 
analyzed.  
 
Xi Vector 

{0 0 0 0.03125 0.0625
 0.09375 0.125 0.15625 0.1875
 0.21875 0.25 0.28125 0.3125
 0.34375 0.375 0.40625 0.4375
 0.46875 0.5 0.53125 0.5625
 0.59375 0.625 0.65625 0.6875
 0.71875 0.75 0.78125 0.8125
 0.84375 0.875 0.90625 0.9375
 0.96875 1 1 1} 
 

Eta Vector 

{0 0 0 0.05 0.10 0.15
 0.20 0.25 0.30 0.35 0.40
 0.45 0.50 0.55 0.60 0.65
 0.70 0.75 0.80 0.85 0.90
 0.95 1 1 1}

 

  
(a) Design Domain,    (b) Flip Vertical Image of Optimal Distribution 

Fig. 2: Showing the Initial Design Domain and the Final Distribution of Material after the 

Optimization. 
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(a) Parallel Engines Performing the Computation   (b) Iteration Curve 

Fig. 3: (a) Showing the Weight for Two Search Engines, (b) Iteration Curve for Two Engines. 

 

The iteration-wise minimum weight is as 

shown in the Figure 3. The topology 

optimization process is performed using Aqua 

Search algorithm. The optimal distribution can 

be reached with fewer computations using two 

search engines in parallel.  

 

Cantilever Carrying Point Load Y at the 

Centre 

A cantilever plate 120 mm×120 mm which is 

fixed at left end and carries a load of 1000 N at 

the centre of the right edge. The design 

domain is meshed using 625 nodes and 576 

elements first order four noded quadrilateral 

elements in plane stress condition. The 

Young’s modulus of elasticity is taken as 

200 kN/mm2 and the Poisson’s ratio is taken as 

0.33. The density of the material is taken as 

78700×10-9 N/mm3. The NURBS basis 

functions of first order are used here. The size 

of the Xi Vector and Eta Vector each is equal 

to 29. The thickness of the plate is taken as 

10 mm. 

 

Xi Vector ={ 0 0 0

 0.041666667 0.083333333 0.125

 0.166666667 0.208333333 0.25

 0.291666667 0.333333333 0.375

 0.416666667 0.458333333 0.5

 0.541666667 0.583333333 0.625

 0.666666667 0.708333333 0.75

 0.791666667 0.833333333 0.875

 0.916666667 0.958333333 1

 1 1} 

 

Eta Vector ={ 0 0 0

 0.041666667 0.083333333 0.125

 0.166666667 0.208333333 0.25

 0.291666667 0.333333333 0.375

 0.416666667 0.458333333 0.5

 0.541666667 0.583333333 0.625

 0.666666667 0.708333333 0.75

 0.791666667 0.833333333 0.875

 0.916666667 0.958333333 1

 1 1} 

 

Figure 4 shows the distribution of material 

using Firefly algorithm. The distribution of the 

material is analyzed using a commercial 

standalone package Marc ®. The analysis 

clearly shows that the structure is safe in stress 

and displacement. Figure 5 shows the iteration 

wise weight of the structure using both firefly 

algorithm and the Aqua search algorithm. The 

Figure 6 clearly shows that the Aqua Search 

algorithm can perform the optimization 

process effectively and efficiently to reduce 

the weight of the structure. The search process 

of intensification and diversification has been 

effectively performed to locate the optimal. 
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Fig. 4: Optimal Distribution in Marc ® using FFA and Parallel Computing. 

 

                          
(a) Minimum Weight Using AS (b) Minimum Weight Using the FFA 

Fig. 5: The Iteration-wise Minimum Weight Using AS and FFA. 

 

 
Fig. 6: Showing the Iteration Curve Showing the Variation of Weight of the Structure vs. Iteration 

Number for Two Engines Using AS and FFA. 
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CONCLUSIONS 
The aim of this study is to perform and 

compare performance of two swarm 

intelligence algorithms namely Firefly 

algorithm and Aqua search algorithm using the 

concept of parallel computing by employing 

two engines in parallel. The analysis has been 

performed using isogeometric NURBS basis 

functions. The process of optimization of 

continuum structures has been performed 

using the flowchart as shown in Figure 1. The 

standard problems from the literature have 

been solved using IGA. The results have been 

compared and presented in the graphs as 

shown in the analysis section. The results 

show that the Aqua search algorithm performs 

better and is able to identify the optimal 

distribution of material in the design domain 

of the structure using two engines in parallel. 

 

Further Study 

The future study can be extended to optimize 

the bracing systems of the buildings, and 

optimal reinforcement distribution in the 

reinforced concrete structures. The study can 

be applied to fracture mechanics as well. 
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