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Abstract 
Dynamic systems are generally categorized as linear and non-linear systems based on the 

analysis approaches developed. Bi-linear spring mass systems form an intermediate category 

which possesses characteristics of both linear and non-linear systems. Analytical solutions to 

bi-linear systems cannot in general be reduced to a single equation covering the entire motion 

domain as in the case of linear systems. Nevertheless, the step-wise linear solutions can be 

obtained within each domain and the solutions can be related to one other from displacement 

and velocity continuity requirement for mechanical systems. Detailed analytical solution to 

single degree of freedom bi-linear spring mass system free vibration is presented in this paper 

towards deriving equations for time period as well as logarithmic decrement. Displacement 

versus time as well as velocity versus time plots is generated to demonstrate bi-linear system 

behavior against the linear system behavior. The solution developed is validated against 

numerical results obtained from finite element analysis. The methodology shall be extended 

for higher degree of systems with increased complexity compared to linear system solutions 

which are already well developed. To demonstrate this, two degree of freedom bi-linear 

spring mass system solutions are also presented. 
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INTRODUCTION 
Bi-linear spring characteristic is a common 
problem encountered in many engineering 

vibration problems. The governing equations 
of motion are not linear in the entire domain of 

motion due to different spring stiff nesses in 

the tensile and compressive domain. A lot of 
research publications have already been made 

worldwide on non-linear spring-mass systems 
starting with French mathematician Poincare 

who later came to known as father of chaos 
theory. The chaotic behavior exhibited in 

Duffing’s equation was simulated by Ueda [1] 
using digital and analog computers. The 

simulation demonstrated the dependence of 
non-linear systems on initial conditions. Ueda 

found harmonic, sub-harmonic, ultra-sub-
harmonic and chaotic response of damping and 

forcing amplitude for forced Duffing 
oscillatory systems. Bi-linear springs are in fact 

special case of the more general piece-wise 
linear springs. Authors give examples of piece-

wise linear dynamic systems like impact 

oscillators, spring-mass systems having 
clearance, pre-loaded compliance systems, 

elastic beams with non-linear boundary 
conditions etc [2–12]. Analytical solutions to 

single degree of freedom systems with piece 

wise linear behavior was perhaps first 
investigated by Hartog [13, 14]. Forced 

responses of piece-wise linear oscillators were 
published by Shaw and Holmes [15] wherein 

harmonic, sub-harmonic and chaotic responses 
of single degree of freedom bi-linear 

asymmetric oscillators were investigated. 
Schulman [16] studied ear drum forced 

vibrations by modelling ear drum as a simple 
bi-linear spring. Closed form techniques for 

solution to piece wise linear systems were 
attempted by only few researchers worldwide 

due to increased complexity for higher degree 
of freedom systems. Single equation solutions 

using heavy side unit step function was derived 
by Chicurel-Uziel [17]. A different approach 

based on frequency domain [18] using 
incremental harmonic balance is used to obtain 

steady state solutions of dynamic non-linear 

systems by Xu et al. Extension of incremental 
harmonic method to piece-wise linear systems 

was done by Lau and Zhang [19]. 
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A detailed solution of single Degree of 

Freedom (DoF) bi-linear spring-mass system 

vibration is presented in this paper with the 

objective of deriving equations for time period 

of vibration and logarithmic decrement in line 

with previous researcher’s work by finding 

individual solutions within each linear domain 

and relating the individual domain solutions 

through displacement and velocity continuity 

equations at motion transition. The solution 

methodology is extended to two degree of 

freedom systems as well considering the 

different configuration states for the springs. 

Extension to multidegree systems is possible 

with increased complexity and computational 

efforts. Comparison of non-linear Finite 

Element (FE) simulation solution with the 

analytical solution developed is also presented 

in this paper. The equations developed for 

time period as well as logarithmic decrement 

shall be readily used for single degree of 

freedom bi-linear spring-mass systems without 

getting into finite element simulations. 

 

SINGLE DOF UN-DAMPED SYSTEM 

FREE VIBRATION  

A bi-linear spring-mass system is shown in 

Fig. 1. The spring stiffness is different in the 

tensile and compressive domain but constant 

throughout the tensile or compressive domain. 

The damping coefficient, ′𝐶′ is assumed 

constant throughout the motion domain to 

keep the model simple though solution to bi-

linear damper can as well be developed on 

similar lines. 

 

Governing equations of motion of mass, 𝑀 in 

the spring tensile/compressive domain are  

𝑀
𝑑2𝑢

𝑑𝑡2 + 𝐶
𝑑𝑢

𝑑𝑥
+ 𝐾1𝑢 = 0, For 𝑢 > 0 (Tensile 

Domain) (1) 

𝑀
𝑑2𝑢

𝑑𝑡2 + 𝐶
𝑑𝑢

𝑑𝑥
+ 𝐾2𝑢 = 0, For 𝑢 < 0 

(Compressive Domain) (2) 

Where, 𝑢 is the mass displacement along X-

direction. 
 

The damping coefficient, 𝐶 becomes zero for 

un-damped bi-linear spring mass system. 

Governing equations of motion reduces to 

𝑀
𝑑2𝑢

𝑑𝑡2 + 𝐾1𝑢 = 0, For 𝑢 > 0 (Tensile 

Domain) (3) 

𝑀
𝑑2𝑢

𝑑𝑡2 + 𝐾2𝑢 = 0, For 𝑢 < 0 (Compressive 

Domain) (4) 

 

At the motion transition point (𝑢 = 0) from 

tensile to compressive domain and vice versa, 

the displacement, 𝑢 as well as velocity, 𝑣 =
𝑑𝑢

𝑑𝑡
 

are continuous. The displacement equation for 

an un-damped linear spring-mass system of 

spring stiffness, 𝐾 and mass 𝑀 is given by 

 

𝑢 = 𝐴 𝑠𝑖𝑛(𝜔𝑡 + ∅)   (5) 

Where, angular velocity 𝜔 = √
𝐾

𝑀
 and 𝐴 and ∅ 

are amplitude and phase to be determined from 

the initial conditions. Once these constants are 

determined, the motion of single DoF linear 

spring-mass system is completely defined. The 

methodology fails for a bi-linear spring mass 

system in Fig. 1 as the motion cannot be 

defined for the entire range with a single 

equation owing to different spring stiff nesses 

in the tensile and compressive domains. But it 

is possible to find solutions separately for each 

of the domains as the governing equations of 

motion are linear within each domain. 

 

Displacement as well as velocity equations in 

tensile/compressive domain for a particular 

cycle ′𝑖′ is given by 

 

For 𝑢 > 0 (Tensile Domain) 

𝑢 = 𝐴2𝑖−1 𝑠𝑖𝑛(𝜔1𝑡 + ∅2𝑖−1)    (6) 

 𝑣 =
𝑑𝑢

𝑑𝑡
= 𝜔1𝐴2𝑖−1 𝑐𝑜𝑠(𝜔1𝑡 + ∅2𝑖−1)  (7) 

 

For 𝑢 < 0 (Compressive Domain) 

𝑢 = 𝐴2𝑖 𝑠𝑖𝑛(𝜔2𝑡 + ∅2𝑖)   (8) 

𝑣 =
𝑑𝑢

𝑑𝑡
= 𝜔2𝐴2𝑖 𝑐𝑜𝑠(𝜔2𝑡 + ∅2𝑖)  (9) 

Where, 𝜔1 = √
𝐾1

𝑀
, 𝜔2 = √

𝐾2

𝑀
 and 

𝐴2𝑖−1, 𝐴2𝑖, ∅2i−1, ∅2i are amplitudes and 

phases of tensile/compressive domain 

pertaining to 𝑖𝑡ℎ cycle. 

 

The amplitudes and phases in the above 

equations are to be determined from initial 

conditions as well as by using displacement 

and velocity continuity during motion 

transition from one domain to another. 
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Fig. 1: Single DoF Bi-linear Spring-Mass System. 

 

Consider the motion for first cycle (𝑖 = 1). Let 

the initial displacement and velocity be 𝑢0 > 0 

and 𝑣0 > 0 at 𝑡 = 0. Choice of motion 

commencement in the tensile domain is 

arbitrary. 

 

Equations of motion for the first cycle (𝑖 = 1) 

are 

For 𝑢 > 0 (Tensile Domain) 

𝑢 = 𝐴1 𝑠𝑖𝑛(𝜔1𝑡 + ∅1)  (10) 

𝑣 =
𝑑𝑢

𝑑𝑡
= 𝜔1𝐴1 𝑐𝑜𝑠(𝜔1𝑡 + ∅1) (11) 

For 𝑢 < 0 (Compressive Domain) 

𝑢 = 𝐴2 𝑠𝑖𝑛(𝜔2𝑡 + ∅2)  (12) 

𝑣 =
𝑑𝑢

𝑑𝑡
= 𝜔2𝐴2 𝑐𝑜𝑠(𝜔2𝑡 + ∅2) (13) 

Since 𝑢0 > 0, motion starts in the tensile region, 

substituting the initial conditions (𝑡 = 0)  

in Eqs. (10) and (11) yield, 

𝑢0 = 𝐴1 𝑠𝑖𝑛 ∅1 and 𝑣0 = 𝜔1𝐴1 cos ∅2 ⟶

𝐴1 = √(𝑢0
2 + (

𝑣0

𝜔1
)

2
)and 

 ∅1 = 𝑡𝑎𝑛−1 (
𝑢0𝜔1

𝑣0
) 

Motion transition from tensile region to 

compressive region occurs when the 

displacement becomes zero. The time 𝑇1 when 

𝑢 = 0 is obtained from Eq. (10) as  

0 = 𝐴1 𝑠𝑖𝑛(𝜔1𝑇1 + ∅1) → 𝜔1𝑇1 + ∅1 = 𝜋 

Hence 

𝑇1 =
𝜋−∅1

𝜔1
              (14) 

 

Velocity at motion transition is given by  

𝑣 =
𝑑𝑢

𝑑𝑡
= 𝐴1𝜔1 𝑐𝑜𝑠(𝜔1𝑇1 + ∅1) = −𝐴1𝜔1 (15) 

This displacement and velocity will be the 

displacement and velocity for motion in the 

compressive region due to its continuity. 

0 = 𝐴2 𝑠𝑖𝑛(𝜔2𝑇1 + ∅2)  (16) 

−𝐴1𝜔1 = 𝜔2𝐴2 𝑐𝑜𝑠(𝜔2𝑇1 + ∅2) (17) 

Eqs. (16) and (17) give ∅2 = 𝜋 − 𝜔2𝑇1 and 

𝐴2 =
𝐴1𝜔1

𝜔2
 

 

First cycle motion is complete when the 

displacement 𝑢 becomes zero again and moves 

towards 𝑢 > 0. Time, 𝑇2 when motion reversal 

happens given by, 

0 = 𝐴2 𝑠𝑖𝑛(𝜔2𝑇2 +  ∅2) → 𝜔2𝑇2 +  ∅2 = 2𝜋 

 

Hence, 

𝑇2 =
2𝜋−∅2

𝜔2
=

𝜋+𝜔2𝑇1

𝜔2
  (18) 

Velocity at the beginning of next cycle is 

given by 

𝑣 =
𝑑𝑢

𝑑𝑡
= 𝐴2 𝜔2𝑐𝑜𝑠(𝜔2𝑇2 + ∅2) =

𝐴2 𝜔2 = 𝐴1𝜔1  (19) 

Displacement and velocity at beginning of 

next cycle is then 

𝑢 = 0, 𝑣 =
𝑑𝑢

𝑑𝑡
= 𝐴1𝜔1  (20) 

 

Proceeding similarly as in the case of cycle 1, 

it can be shown that, constants 𝐴2𝑖−1, 𝐴2𝑖 for 

subsequent cycles will be the same as that of 

cycle 1. 

 

Consider an un-damped single DoF bi-linear 

spring mass system as defined in Table 1. 
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Table 1: Single DoF Un-damped Bi-linear 

Spring Mass System Definition. 

Item Value Units 

𝑀 1.0 Kg 

𝐾1 400.0 N/m 

𝐾2 100.0 N/m 

 

𝜔1 and 𝜔2 are then 

𝜔1 = √
𝐾1

𝑀
= √

400

1
= 20 rad/s 

𝜔2 = √
𝐾2

𝑀
= √

100

1
= 10 rad/s 

 

Let the initial displacement and velocity be 

𝑢0 = 1 × 10−2 m and 𝑣0 = 1 m/s, 

respectively. Since displacement is positive, 

the motion starts in the tensile domain. The 

amplitude and phase pertaining to first and 

second cycle for tensile domain as well as 

compressive domain are tabulated in Table 2. 

 

Free vibration displacement-time as well as 

velocity-time plots for an un-damped single 

DoF linear system (𝐾 = 𝐾1 or 𝐾2 for both 

tensile as well as compressive domains) as 

well as bi-linear spring mass system are given 

in Fig. 2 and Fig. 3, respectively. Plots are 

made non-dimensional by dividing the 

displacement and velocity with initial 

displacement and initial velocity, respectively. 

Also, time is made non-dimensional with 

respect to time period, 𝑇. Both the plots show 

a different behavior for bi- linear spring mass 

system free vibration compared to that of 

linear spring mass systems. The velocity–time 

plot has got identical amplitudes in both spring 

mass systems though the time period is 

different. For bi-linear spring displacement-

time plots, the time period as well as 

amplitude in the compressive domain is 

different from linear spring displacement-time 

plots. The displacement amplitude is same for 

both spring mass systems in the tensile 

domain. This is because, the initial conditions 

are defined in the tensile domain and identical 

conditions would have obtained had the 

motion started in the compressive domain. 

 

Table 2: Single DoF Un-damped Amplitude 

and Phase Angles for First and Second Cycle. 

Item Value Units 

Tensile Domain 

𝐴1 5.1 × 10−2 m 

∅1 0.20 Radians 

𝐴3 5.1 × 10−2 m 

∅3 -2.94 Radians 

Compressive Domain 

𝐴2 1 × 10−1 m 

∅2 1.67 Radians 

𝐴4 1 × 10−1 m 

∅4 3.24 Radians 

 

 
Fig. 2: Single DoF Un-damped System Free Vibration Displacement-Time Plots. 
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Fig. 3: Single DoF Un-damped System Free Vibration Velocity-Time Plots. 

 

Single DoF Un-Damped Free Vibration 

Time Period Estimation 

Let 𝑇 be the time period of un-damped free 

vibration of bi-linear spring mass system. 

Time required for completion of first cycle 

is 𝑇2. Time period is given by the summation 

of time corresponding to phase, ∅1 and 𝑇2. 

𝑇 = 𝑇2 +
∅1

𝜔1
=

𝜋+𝜔2𝑇1

𝜔2
+

𝜋

𝜔1
− 𝑇1 =

𝜋

𝜔1
+

𝜋

𝜔2
 (21) 

 

Angular velocity, 𝜔𝑏𝑖−𝑙𝑖𝑛𝑒𝑎𝑟 of the bi-linear 

spring mass system is defined as  

𝜔𝑏𝑖−𝑙𝑖𝑛𝑒𝑎𝑟 =
2𝜋

𝑇
  (22) 

Substituting 𝑇 from Eq. (21) in to Eq. (22) 

gives 

𝜔𝑏𝑖−𝑙𝑖𝑛𝑒𝑎𝑟 =
2𝜋

𝜋

𝜔1
+

𝜋

𝜔2

=
2𝜔1𝜔2

𝜔1+𝜔2
  (23) 

 

SINGLE DOF DAMPED SYSTEM 

FREE VIBRATION  
Damped systems free vibration motion is 

governed by the amount of damping present in 

the system. Only under-damped system in both 

tensile and compressive domain are considered 

as motion transition from tensile to 

compressive domain and vice versa does not 

happen in over-damped and critically damped 

systems. 

 

Governing equations of motion of mass, 𝑀 in 

the spring tensile/ compressive domain for 

damped bi-linear spring mass system are given 

by Eqs. (1) and (2). Damping ratios for tensile 

as well as compressive domains are defined as 

𝜁1 =
𝐶

2𝑀𝜔1
, For 𝑢 > 0 (Tensile Domain) (24) 

𝜁2 =
𝐶

2𝑀𝜔2
, For 𝑢 < 0 (Compressive Domain) 

(25) 

At the motion transition point from tensile to 

compressive domain and vice versa (𝑢 = 0), 

the displacement, 𝑢 as well as velocity, 𝑣 =
𝑑𝑢

𝑑𝑡
 

are continuous. 

 

A single equation will not define the motion of 

the damped bi-linear system in the entire 

motion domain. Solution for each of the 

domain for a particular cycle ‘𝑖’ is given by  

For 𝑢 > 0 

𝑢 = 𝐴2𝑖−1𝑒−𝜁1𝜔1𝑡𝑠𝑖𝑛 (𝜔𝑑1𝑡 + ∅2𝑖−1)  (26) 

𝑣 =
𝑑𝑢

𝑑𝑡
= 𝐴2𝑖−1𝜔𝑑1𝑒−𝜁1𝜔1𝑡𝑐𝑜𝑠 (𝜔𝑑1𝑡 +

∅2𝑖−1) − 𝜁1𝜔1𝑢  (27) 

For 𝑢 < 0 

𝑢 = 𝐴2𝑖𝑒−𝜁2𝜔2𝑡𝑠𝑖𝑛 (𝜔𝑑2𝑡 + ∅2𝑖)  (28) 

𝑣 =
𝑑𝑢

𝑑𝑡
= 𝐴2𝑖𝜔𝑑2𝑒−𝜁2𝜔2𝑡𝑐𝑜𝑠 (𝜔𝑑2𝑡 + ∅2𝑖) −

𝜁2𝜔2𝑢 (29) 

Where, 

𝜔𝑑1 = 𝜔1√(1 − 𝜁1
2)  and 𝜔𝑑2 =

𝜔2√(1 − 𝜁2
2) 

𝐴2𝑖−1, 𝐴2𝑖, ∅2𝑖−1, ∅2𝑖 are constants and phase 

angles, respectively for tensile and 
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compressive domains corresponding to cycle 

‘𝑖’. 
 

Consider the motion for first cycle (𝑖 = 1). Let 

the initial displacement and velocity be 𝑢0 > 0 

and 𝑣0 > 0 at 𝑡 = 0. Since 𝑢0 > 0, motion 

starts in the tensile region, substituting the 

initial conditions (𝑡 = 0) in Eqs. (26) and (27) 

yield, 

𝑢0 = 𝐴1𝑠𝑖𝑛 ∅1    (30) 

𝑣0 = 𝐴1𝜔𝑑1𝑐𝑜𝑠 ∅1 − 𝜁1𝜔1𝑢0 (31) 

 

Hence, constant 𝐴1 and phase ∅1 for tensile 

domain in the first cycle are given by  

𝐴1 = √(𝑢0
2 + (

𝑣0+𝜁1𝜔1𝑢0

𝜔𝑑1
)

2
) and 

 ∅1 = 𝑡𝑎𝑛−1 (
𝑢0𝜔𝑑1

𝑣0+𝜁1𝜔1𝑢0
) 

Motion transition from tensile region to 

compressive region occurs when the 

displacement becomes zero. The time 𝑇1 when 

𝑢 = 0 is obtained from Eq. (26) as  

0 = 𝐴1𝑒−𝜁1𝜔1𝑇1𝑠𝑖𝑛 (𝜔𝑑1𝑇1 +  ∅1)
→ 𝑠𝑖𝑛(𝜔𝑑1𝑇1 + ∅1) = 0
→ 𝜔𝑑1𝑇1 +  ∅1 = 𝜋 

Hence, 

𝑇1 =
(𝜋−∅1)

𝜔𝑑1
                 (32) 

From Eq. (27), velocity at motion reversal is 

given by  

𝑣 = −𝐴1𝜔𝑑1𝑒−𝜁1𝜔1𝑇1  (33) 

At the onset of motion in compressive domain, 

the displacement initial condition is given by 

Eq. (28) as 

𝐴2𝑒−𝜁2𝜔2𝑇1𝑠𝑖𝑛 (𝜔𝑑2𝑇1 + ∅2) = 0 
 

Hence, 

𝜔𝑑2𝑇1 + ∅2 = 𝜋 

Substituting 𝑇1 from Eq. (32), phase for 

compressive domain for first cycle,   

∅2 =  𝜋 −
𝜔𝑑2

𝜔𝑑1
(𝜋 − ∅1)    (34) 

Velocity at the onset of motion in compressive 

domain for first cycle is then (Eq. (29)) 

𝑣 = −𝐴2𝜔𝑑2𝑒−𝜁2𝜔2𝑇1 = −𝐴1𝜔𝑑1𝑒−𝜁1𝜔1𝑇1 (35) 

It can be shown that, 𝜁1𝜔1 = 𝜁2𝜔2 =
𝑐

2𝑚
.  

 

Therefore 𝐴2 is given by  

𝐴2 = 𝐴1
𝜔𝑑1

𝜔𝑑2
  (36) 

First cycle motion is complete when the 

displacement 𝑢 becomes zero again and moves 

towards 𝑢 > 0. Let 𝑇2 be the time when 

motion reversal happens given by Eq. (28) as 

𝐴2𝑒−𝜁2𝜔2𝑇2𝑠𝑖𝑛 (𝜔𝑑2𝑇2 + ∅2) = 0 → 𝑇2 =
(2𝜋−∅2)

𝜔𝑑2
=

𝜋

𝜔𝑑2
+

(𝜋−∅1)

𝜔𝑑1
   (37) 

 

Velocity at onset of second cycle motion is 

then ((Eq. (29)), 

𝑣 = 𝐴2𝜔𝑑2𝑒−𝜁2𝜔2𝑇2 = 𝐴1𝜔𝑑1𝑒−𝜁2𝜔2𝑇2  (38) 

 

Proceeding similarly as in the case of cycle 1, 

the amplitudes and phases of subsequent 

cycles can be evaluated. It can be shown that, 

constants 𝐴2𝑖−1, 𝐴2𝑖 for subsequent cycles will 

be the same as that of cycle 1. 

 

Consider a damped bi-linear spring mass 

system as defined in Table 3. 

 

Table 3: Single DoF Damped Bi-linear Spring 

Mass System Definition. 

Item Value Units 

𝑀 1.0 Kg 

𝐾1 400.0 N/m 

𝐾2 100.0 N/m 

𝐶 5.0 Ns/m 

  

Angular velocities as well as damping ratios 

are tabulated in Table 4. 

 

Table 4: Single DoF Damped System Angular 

Velocities and Damping Ratios. 

Item Value Units 

𝜔1 20.00 Rad/s 

𝜔2 10.00 Rad/s 

𝜁1 0.13 - 

𝜁2 0.25 - 

𝜔𝑑1 19.84 Rad/s 

𝜔𝑑2 9.68 Rad/s 

 

Let the initial displacement and velocity be the 

same as that of un-damped free vibration in 

preceding section for un-damped free 

vibration. Since displacement is positive the 

motion starts in the tensile domain. The 

constants 𝐴2𝑖−1, 𝐴2𝑖 and phase angles 

∅2𝑖−1, ∅2𝑖 for first and second cycle for tensile 

domain as well as compressive domain are 

tabulated in Table 5. 

 

Displacement-time as well as velocity-time 

plots for damped bi-linear mass spring system 

free vibration are given in Fig. 4 and Fig. 5, 
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respectively. Linear spring stiff ness (i.e., 

𝑘 = 𝐾1 or 𝐾2 for both tensile as well as 

compressive domains) plots are also given for 

comparison. Displacement, velocity and time 

are made non-dimensional with respect to 

initial displacement, velocity and time period, 

respectively. As in the case of un-damped 

systems, different behavior is observed for 

displacement as well as velocity-time plots for 

damped bi- linear mass spring systems. 

 

Single Dof Damped Free Vibration Time 

Period Estimation 

Let 𝑇𝑑 be the time period. Time required for 

completion of first cycle is 𝑇2. Time period is 

given by the summation of time corresponding 

to phase ∅1 and 𝑇2. 

𝑇𝑑 = 𝑇2 +
∅1

𝜔𝑑1
 

From Eq. (37), 

𝑇𝑑 =
𝜋

𝜔𝑑2
+

(𝜋−∅1)

𝜔𝑑1
+

∅1

𝜔𝑑1
⟶ 𝑇𝑑 =

𝜋

𝜔𝑑2
+

𝜋

𝜔𝑑1
 (39) 

Angular velocity, 𝜔𝑑(𝑏𝑖−𝑙𝑖𝑛𝑒𝑎𝑟) of the damped 

bi-linear spring mass system is defined as  

𝜔𝑑(𝑏𝑖−𝑙𝑖𝑛𝑒𝑎𝑟) =
2𝜋

𝑇𝑑
 

Substituting Td from Eq. (39) 

𝜔𝑑(𝑏𝑖−𝑙𝑖𝑛𝑒𝑎𝑟) =
2𝜋

𝜋

𝜔𝑑2
+

𝜋

𝜔𝑑1

=
2𝜔𝑑1𝜔𝑑2

𝜔𝑑1+𝜔𝑑2
  (40) 

 

Table 5: Single DoF Damped System Constants and Phase Angles for First and Second Cycle. 

Item Value Units 

Tensile Domain 

𝐴1 5.0 × 10−2 m 

∅1 0.19 Radians 

𝐴3 5.0 × 10−2 m 

∅3 -3.11 Radians 

Compressive Domain 

𝐴2 1.1 × 10−1 m 

∅2 1.70 Radians 

𝐴4 1.1 × 10−1 m 

∅4 3.31 Radians 

 

 
Fig. 4: Single DoF Damped System Free Vibration Displacement-Time Plots. 
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Fig. 5: Single DoF Damped System Free Vibration Velocity-Time Plots. 

 

Single Dof Damped Free Vibration 

Logarithmic Decrement Estimation 

Logarithmic decrement is defined as natural 

logarithm of ratio of maximum amplitude of a 

cycle to the maximum amplitude of 

succeeding cycle. Let 𝑇𝑖 be the time 

corresponding to maximum amplitude in the 

tensile domain for 𝑖𝑡ℎ cycle. Time 𝑇𝑖+1 for 

time corresponding to maximum amplitude in 

the tensile domain for (𝑖 + 1)𝑡ℎ cycle is given 

by. 

𝑇(𝑖+1) = 𝑇𝑖 + 𝑇, where, ′𝑇′ is the time period 

of damped vibration. 

 

Maximum amplitude is when the sine term 

becomes unity in Eq. (26) 

For 𝑖𝑡ℎ cycle 

𝑢𝑖_𝑚𝑎𝑥 = 𝐴1𝑒−𝜁1𝜔1𝑇𝑖   (41) 

 

For (𝑖 + 1)𝑡ℎ cycle 

𝑢(𝑖+1)_𝑚𝑎𝑥 = 𝐴1𝑒−𝜁1𝜔1𝑇(𝑖+1)  (42) 

𝛿 = 𝑙𝑛 (
𝑢𝑖_𝑚𝑎𝑥

𝑢(𝑖+1)_𝑚𝑎𝑥
) = 𝑙𝑛 (

𝐴1𝑒−𝜁1𝜔1𝑇𝑖

𝐴1𝑒
−𝜁1𝜔1𝑇(𝑖+1)

) =

𝜁1𝜔1𝑇     (43) 

 

Substituting 𝑇 from eqn. (39) and using 

relation 𝜁1𝜔1 = 𝜁2𝜔2 

𝛿 =
𝜋𝜁2𝜔2

𝜔𝑑2
+

𝜋𝜁1𝜔1

𝜔𝑑1
⟶ 𝛿 =

𝜋𝜁1

√(1−𝜁1
2)

+
𝜋𝜁2

√(1−𝜁2
2)

 (44) 

EXTENSION TO TWO DOF 

SYSTEMS 

The solution methodology for single degree of 

freedom bi-linear spring mass system is 

extended for two DoF bi-linear spring systems 

with increased complexity. A two DoF bi-

linear mass spring system is shown in Fig. 6. 

To reduce complexity linear viscous dampers 

are assumed along with bi-linear springs-1 and 

2. 

 

Four different possible spring configuration 

states are  

a) Spring-1 in tensile domain, Spring-2 in 

tensile domain 

b) Spring-1 in tensile domain, Spring-2 in 

compressive domain 

c) Spring-1 in compressive domain, Spring-2 

in tensile domain 

d) Spring-1 in compressive domain, Spring-2 

in compressive domain 

 

Spring-1 is in tensile domain if displacement 

𝑢1 > 0 and in compressive domain if 𝑢1 < 0. 

Spring-2 domain is determined by the relative 

displacement 𝑢2-𝑢1, in tensile domain if 𝑢2-

𝑢1 > 0 and in compressive domain if 𝑢2-

𝑢1 < 0. 
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Fig. 6: Two DoF Bi-linear Spring-Mass System. 

 

The spring mass system will be linear within 

each of the configurations listed and standard 

solutions are available within the domain as a 

linear combination of Eigen vectors. The 

standard solution for un-damped (𝐶1 = 𝐶2 =
0) systems are given by 

𝑢1
𝑘 = 𝑅1

𝑘 𝑠𝑖𝑛(𝜔1
𝑘𝑡 + 𝜙1

𝑘)+𝑅2
𝑘 𝑠𝑖𝑛(𝜔2

𝑘𝑡 + 𝜙2
𝑘) (45) 

𝑣1
𝑘 =

𝑑𝑢1
𝑘

𝑑𝑡
  (46) 

 

𝑢2
𝑘 = 𝑟𝑖

𝑘𝑅1
𝑘 𝑠𝑖𝑛(𝜔1

𝑘𝑡 + 𝜙1
𝑘)+𝑟2

𝑘𝑅2
𝑘 𝑠𝑖𝑛(𝜔2

𝑘𝑡 + 𝜙2
𝑘)

  (47) 

𝑣2
𝑘 =

𝑑𝑢2
𝑘

𝑑𝑡
  (48) 

Where, 𝑅1
𝑘, 𝑅2

𝑘, 𝜙1
𝑘, 𝜙2

𝑘, 𝜔1
𝑘 , 𝜔2

𝑘, 𝑟𝑖
𝑘, 𝑟2

𝑘 are the 

amplitudes, phases, Eigen values, Eigen vector 

ratios (ratio of Eigen vector of 𝑀2 to that of 

𝑀1), respectively for 𝑘𝑡ℎ configuration. As in 

the case of single degree of freedom system, 

the amplitudes and phase angles will vary with 

domain transition and hence need to be 

calculated from displacement and velocity 

continuity during domain transition.  

 

For under damped systems, the Eigen values 

as well as Eigen vector ratios will be complex 

numbers in general. The standard solutions for 

damped two degree of freedom systems are 

given below. 

𝑢1
𝑘 =

𝑒𝛼1
𝑘𝑡(𝐴𝑘 𝑐𝑜𝑠 𝛽1

𝑘𝑡 +

𝐵𝑘 𝑠𝑖𝑛 𝛽1
𝑘𝑡)+𝑒𝛼2

𝑘𝑡(𝐶𝑘 𝑐𝑜𝑠 𝛽2
𝑘𝑡 + 𝐷𝑘 𝑠𝑖𝑛 𝛽2

𝑘𝑡)  (49) 

𝑣1
𝑘 =

𝑑𝑢1
𝑘

𝑑𝑡
  (50) 

𝑢2
𝑘 = 𝑒𝛼1

𝑘𝑡 ((𝛾1
𝑘𝐴𝑘 + 𝛿1

𝑘𝐵𝑘) 𝑐𝑜𝑠 𝛽1
𝑘𝑡 +

(𝛾1
𝑘𝐵𝑘 − 𝛿1

𝑘𝐴𝑘) 𝑠𝑖𝑛 𝛽1
𝑘𝑡)+ 

𝑒𝛼2
𝑘𝑡 ((𝛾2

𝑘𝐶𝑘 + 𝛿2
𝑘𝐷𝑘) 𝑐𝑜𝑠 𝛽2

𝑘𝑡 +

(𝛾2
𝑘𝐷𝑘 − 𝛿2

𝑘𝐶𝑘) 𝑠𝑖𝑛 𝛽2
𝑘𝑡)  (51) 

𝑣2
𝑘 =

𝑑𝑢2
𝑘

𝑑𝑡
  (52) 

Where, 𝛼1
𝑘 , 𝛼2

𝑘 , 𝛽1
𝑘, 𝛽2

𝑘 are the real and 

imaginary parts of Eigen values for 𝑘𝑡ℎ 

configuration. 𝛾1
𝑘 , 𝛾2

𝑘 , 𝛿1
𝑘 , 𝛿2

𝑘  are the real and 

imaginary parts of the corresponding Eigen 

vector ratios. 𝐴𝑘 , 𝐵𝑘 , 𝐶𝑘 and 𝐷𝑘 are solution 

coefficients for 𝑘𝑡ℎ configuration which vary 

with domain transition and hence need to be 

calculated from displacement and velocity 

continuity during domain transition.  

 

Consider a two degree of freedom bi-linear 

spring mass system as defined in Table 6. 

 

Table 6: Two DoF Un-damped Spring Mass 

System Definition. 

Item Value Units 

𝑀1 2.0 Kg 

𝐾1 400.0 N/m 

𝐾2 300.0 N/m 

𝑀2 1.0 Kg 

𝐾3 200.0 N/m 

𝐾4 100.0 N/m 
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𝐶1 5.0 Ns/m 

𝐶2 5.0 Ns/m 

Eigen values and eigen vector ratios 

corresponding to four configuration states for 

un-damped as well as damped systems are 

tabulated in Table 7 and Table 8, respectively. 

 

Let the initial displacements and velocities be 

𝑢1
0 = 1.5 × 10−2  m, 𝑢2

0 = 2.5 × 10−2  m, 

𝑣1
0 = 1 m/s and 𝑣2

0 = 2 m/s, respectively for 

𝑀1 and 𝑀2. The choice of initial conditions 

are arbitrary. The displacement-time as well as 

velocity –time plots are provided in Fig. 7 to 

Fig. 10 for both damped and un-damped two 

degree of freedom systems. The displacements 

as well as velocities are made non-dimensional 

with respect to initial displacements as well as 

initial velocities. Time is made non-

dimensional with respect to time of motion, 

𝑇𝑡𝑜𝑡𝑎𝑙 considered. 

 

 
Fig. 7: Two DoF Un-damped System Free Vibration Displacement-Time Plots. 
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Fig. 8: Two DoF Un-damped System Free Vibration Velocity -Time Plots. 

 
Fig. 9: Two DoF Damped System Free Vibration Displacement-Time Plots. 
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Fig. 10: Two DoF Damped System Free Vibration Velocity-Time Plots. 

 
Table 7: Eigen Values and Eigen Vectors for Un-damped Two DoF System. 

Configuration 𝝎𝟏
𝒌 𝝎𝟐

𝒌 𝒓𝒊
𝒌 𝒓𝟐

𝒌 

Spring-1 tensile, Spring-2 tensile (𝑘 = 1) 10.0 20.0 2.0 -1.0 

Spring-1 tensile, Spring-2 compressive (𝑘 = 2) 8.48 16.68 3.56 -0.56 

Spring-1 compressive, Spring-2 tensile (𝑘 = 3) 11.04 18.11 1.28 -0.78 

Spring-1 compressive, Spring-2 compressive (𝑘 = 4) 7.96 15.38 2.73 -0.73 

 

Table 8: Eigen Values and Eigen Vectors for Damped Two DoF System. 

Configuration 𝛼1
𝑘 , 𝛽1

𝑘 𝛼2
𝑘 , 𝛽2

𝑘 𝛾1
𝑘 , 𝛿1

𝑘 𝛾2
𝑘 , 𝛿2

𝑘 

Spring-1 tensile, Spring-2 tensile 
(𝑘 = 1) 

-0.83, 9.99 -4.17, 19.51 1.97, -0.16 -1.03, -0.17 

Spring-1 tensile, Spring-2 compressive 
(𝑘 = 2) 

-1.30, 8.53 -3.7, 15.97 3.22, -1.03 -0.59, -0.36 

Spring-1 compressive, Spring-2 tensile 
(𝑘 = 3) 

-0.18, 10.81 -4.82, 17.86 1.36, 0.13 -1.01, -0.43 

Spring-1 compressive, Spring-2 compressive (𝑘 = 4) -1.06, 7.99 -3.94, 14.67 2.54, -0.58 -0.79, -0.33 

COMPARISON WITH FE 

SIMULATION RESULTS 

Bi-linear free vibration problem solutions 

given in preceding sections are compared with 

Finite Element (FE) simulations. Nastran non-

linear transient analysis (SOL 129) is used for 

simulation of un-damped as well as damped 

bi-linear spring mass systems. The spring mass 

system parameters as well as initial conditions 

are same as defined in respective preceding 

sections for single DoF as well as two DoF 

systems. The comparison displacement plots 

are given in Fig. 11 to Fig. 14, respectively. 

The displacement-time plots show that 

analytical solutions are closely matching with 

FE simulation results for both single degree 

and two degree of freedom bi-linear spring-

mass systems. 
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Fig. 11: Single DoF Un-damped Free Vibration Displacement-Time Comparison Plot. 

 

 
Fig. 12: Single DoF Damped Free Vibration Displacement-Time Comparison Plot. 
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Fig. 13: Two DoF Un-damped Free Vibration Displacement-Time Comparison Plot. 

 

 
Fig. 14: Two DoF Damped Free Vibration Displacement-Time Comparison Plot. 

 

CONCLUSIONS AND FUTURE 

SCOPE 

Detailed analytical solutions for free vibration 
of single degree of freedom bi-linear spring-
mass systems have been presented in this 
paper with derivations of time period as well 
as logarithmic decrement. Extension of the 
methodology to two degree of freedom bi-

linear spring mass systems is also 
demonstrated. Bi-linear free vibration problem 
solution methodology can further be extended 
to forced vibration problems both periodic and 
non-periodic. For periodic harmonic 
excitations, conventional solutions for linear 
systems can be extended for bi-linear spring 
systems as well. It will be interesting to find 
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the solution and displacement-time plots for 
un-damped forced vibration when the exciting 
frequency matches with one of the domain 
(tensile/compressive) frequencies. In such a 
case there will be resonance condition in one 
domain and non-resonance condition for the 
other. Non-harmonic periodic excitations can 
be transformed to harmonic excitations 
through Fourier transformations. In the case of 
non-periodic excitations, the convolution 
integral method applicable for linear systems 
can no longer be used for bi-linear springs as 
the bi-linear spring systems are no longer 
linear in the entire domain of motion. 
Nevertheless, the solution can still be made 
through conventional particular integral 
solution for standard functions of excitation. 
The solution methodology can also be 
extended to higher degree of freedom systems 
with increased complexity. 
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NOMENCLATURE 
DoF : Degree of Freedom 

FE : Finite Element 

𝑀 : Mass 

𝑀𝑖 : 2 DoF Mass, 𝑖 = 1,2 

𝐾𝑖 : Spring Stiffness, 𝑖 = 1,2,3,4 

𝐶 : Damping Coefficient 

𝐶𝑖 : 2 DoF Damping Coefficient, 

𝑖 = 1,2 

𝑢 : Displacement 

ui : Displacement of 2 DoF system 

masses, 𝑖 = 1,2 

𝑣 : Velocity 

𝑣𝑖 : Velocity of 2 DoF system 

masses, 𝑖 = 1,2 

𝑡 : Time 

𝑢0 : Initial Displacement 

𝑣0 : Initial Velocity 

𝑢𝑖
0 : 2 DoF Free Vibration Initial 

Displacement, 𝑖 = 1,2 

𝑣𝑖
0 : 2 DoF Free Vibration Initial 

Displacement, 𝑖 = 1,2 

𝜔𝑖 : Un-damped Free Vibration 

Angular Velocity, 𝑖 = 1,2 

𝜔𝑑𝑖  : Damped Free Vibration 

Angular Velocity, 𝑖 = 1,2 

𝜔𝑏𝑖−𝑙𝑖𝑛𝑒𝑎𝑟  : Bi-linear Spring Un-damped 
Angular Velocity 

𝜔𝑑(𝑏𝑖−𝑙𝑖𝑛𝑒𝑎𝑟) : Bi-linear Spring Damped 
Angular Velocity 

𝐴2𝑖−1, 𝐴2𝑖 : Motion Amplitude,  𝑖 = 1,2 

∅2𝑖−1, ∅2𝑖 : Phase Angle,  𝑖 = 1,2 

𝜁𝑖  : Damping Ratio,  𝑖 = 1,2 

𝑇 : Un-damped Bi-Linear Spring 
Free Vibration Time Period 

𝑇𝑑 : Damped Bi-Linear Spring Free 
Vibration Time Period 

𝑇𝑡𝑜𝑡𝑎𝑙  : Time of motion considered for 
2 DoF. 

𝛿 : Damped Bi-Linear Spring Free 
Vibration Logarithmic 
Decrement 

𝜔𝑖
𝑘 : Un-damped 2 DoF Free 

Vibration Angular Velocity for 

𝑘𝑡ℎ Configuration, 𝑖 = 1,2 and 
𝑘 = 1,2,3,4 

𝑢𝑖
𝑘 : Displacement of 2 DoF for 𝑘𝑡ℎ 

Configuration, 𝑖 = 1,2 and 

𝑘 = 1,2,3,4 

𝑣𝑖
𝑘  : Velocity of 2 DoF for 𝑘𝑡ℎ 

Configuration, 𝑖 = 1,2 and 

𝑘 = 1,2,3,4 

𝑅𝑖
𝑘 : Amplitude of un-damped 2 

DoF Free Vibration for 𝑘𝑡ℎ 
Configuration, 𝑖 = 1,2 and 
𝑘 = 1,2,3,4 

𝜔𝑖
𝑘 : Un-damped 2 DoF Free 

Vibration Angular Velocity for 

𝑘𝑡ℎ Configuration, 𝑖 = 1,2 and 
𝑘 = 1,2,3,4 

∅𝑖
𝑘 : Un-damped 2 DoF Free 

Vibration Phase Angle for 𝑘𝑡ℎ 
Configuration, 𝑖 = 1,2 and 
𝑘 = 1,2,3,4 

𝑟𝑖
𝑘 : Eigen Vector Ratio of 2 DoF 

for 𝑘𝑡ℎ Configuration, 𝑖 = 1,2 
and 𝑘 = 1,2,3,4 

𝐴𝑘, 𝐵𝑘 , 𝐶𝑘, 𝐷𝑘 : Solution Coefficient for 
Damped 2 DoF Free Vibration 

for 𝑘𝑡ℎ Configuration, 𝑖 = 1,2 
and 𝑘 = 1,2,3,4 

𝛼𝑖
𝑘 : Real Part of Eigen Value for 

Damped 2 DoF Free Vibration 

for 𝑘𝑡ℎ Configuration, 𝑖 = 1,2 
and 𝑘 = 1,2,3,4 

𝛽𝑖
𝑘 : Imaginary Part of Eigen Value 

for Damped 2 DoF Free 

Vibration for 𝑘𝑡ℎ 
Configuration, 𝑖 = 1,2 and 

𝑘 = 1,2,3,4 

𝛾𝑖
𝑘 : Real Part of Eigen Vector 

Ratio for Damped 2 DoF Free 

Vibration for 𝑘𝑡ℎ 
Configuration, 𝑖 = 1,2 and 

𝑘 = 1,2,3,4 



 

Bi-Linear Spring Free Vibration Solution                                                                             Nair and Poovalingam 

 

 

JoAET (2018) 21-35 © STM Journals 2018. All Rights Reserved                                                                Page 36 

𝛿𝑖
𝑘 : Imaginary Part of Eigen 

Vector Ratio for Damped 2 

DoF Free Vibration for 𝑘𝑡ℎ 

Configuration, 𝑖 = 1,2 and 

𝑘 = 1,2,3,4 
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