Open Access Open Access  Restricted Access Subscription or Fee Access

Synthesis, Properties and Applications of Amorphous Carbon Nanotube and MoS2 nanosheets: A Review

Binoy Bera

Abstract


Recently, carbon nanotube have been showing great interest in the field of nanotechnology for its exceptional physical, electronic properties. The synthesis procedure of crystalline carbon nanotube are immensely tough for which researchers are focused on amorphous carbon nanotube. Furthermore the presence of dangling bonds in amorphous carbon nanotube makes it easily reactable with other nanomaterial to form into nanohybrids. This nanohybrids are quite challengeable to crystalline carbon nanotube in various applications. Based on the properties of prepared nanohybrids, it is used in several application such as toxic dye removal from water, high-performance lithium ion batteries, field-emission display devices, cold cathode, electromagnetic wave absorber etc.Furthermore,In recent days, among transitional metal dichalcogenides, molybdenum disulfide are most interesting material in the field of microelectronics and optoelectronics due to its distinctive properties. Bandgap of this material varies from 1.2 ev (bulk MoS2 with indirect bandgap ) to 1.9 ev (MoS2 nanosheets with direct bandgap) which makes it feasible in many applications. Specially MoS2 nanosheets shows superior applications for their fine physical, electronic and optical properties. In some cases such as fabrication of field effect transistor based biosensor, it is preferable over graphene a two dimensional material. Moreover, Synthesis procedure of MoS2 nanosheets are quiet simple and easy. For synthesis of MoS2 nanosheets, numerous procedure has been discovered so far. In this paper, a review about the synthesis and applications of amorphous carbon nanotube were discussed.Fewproperties of amorphous carbon nanotube has also been described in sort. Furthermore, a little bit concept about the different synthesis method of MoS2 nanosheets were described. Peak analysis of MoS2 nanosheets from numerous characteristics methods were also mentioned here.


Keywords


amorphous carbon nanotube, MoS2, nanosheets, applications, properties, synthesis method

Full Text:

PDF

References


Iijima S. Helical microtubules of graphitic carbon. Nature. 354, 56–58p.

Eda G, Unalan HE, Rupesinghe N, Amaratunga GAJ, Chhowalla M. Appl. Phys. Lett. 2008; 93: 233502p.

Liu Y, Tang J, Chen X, Chen W, Pang GKH, Xin JH. A wet-chemical route for the decoration of CNTs with silver nanoparticles. Carbon. 2006; 44 (2): 381– 383p.

Zanolli Z, Leghrib R, Felten A, Pireaux J, Llobet E, Charlier J. Gas sensing with Au-decorated carbon nanotubes. Journal of American Chemical Society. 2011; 6 (5): 4592–4599p.

Zhaoet T. Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes. Sci. Rep. 2014; 4: 5619p.

Guo DJ, Li HL. Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon. 2005; 43 (6): 1259–1264p.

Bera B. Literature Review on Electrospinning Process (A Fascinating Fiber Fabrication Technique). Imperial Journal of Interdisciplinary Research. 2016; 2 (8): 972-984p.

Bera B, Sarkar MD. Piezoelectricity in PVDF and PVDF Based Piezoelectric Nanogenerator: A Concept. IOSR Journal of Applied Physics. 2017; 9 (3): 95-99p.

Bera B, Mandal D, Sarkar MD. Sensor Made of PVDF/graphene Electrospinning Fiber and Comparison between Electrospinning PVDF Fiber and PVDF/graphene Fiber. Imperial Journal of Interdisciplinary Research. 2016; 2 (5): 1411-1413p.

Bera B, Sarkar MD. Gold Nanoparticle Doped PVDF Nanofiber Preparation of Concurrently Harvesting Light and Mechanical Energy. IOSR Journal of Applied Physics (IOSR-JAP). 2017; 9 (3): 05-12p.

Bera B, Sarkar MD. PVDF based Piezoelectric Nanogenerator as a new kind of device for generating power from renewable resources. IOSR Journal of Polymer and Textile Engineering. 2017; 4 (2): 01-05p.

Bera B. Preparation of polymer nanofiber and its application. Asian journal of physical and chemical sciences. 2017; 2 (4): 1-4p.

Bera B. Literature Review on Triboelectric Nanogenerator. Imperial Journal of Interdisciplinary Research. 2016; 2 (10): 1263-1271p.

Bera B. Preparation of MoS2 nanosheets and PVDF nanofiber. Asian journal of physical and chemical sciences. 2017; 2 (4): 1-9p.

Bera B. Nanoporous Silicon Prepared by Vapour Phase Strain Etch and Sacrificial Technique. IJCA Proceedings on International Conference on Microelectronic Circuit and System MICRO. 2015; 1: 42-45p.

Bera B, Mandal D, Sarkar MD. Porous Silicon and its Nanoparticle as Biomaterial: A Review. Imperial Journal of Interdisciplinary Research. 2016; 2 (11): 1414-1419p.

Bera B. A Review on Polymer, Graphene and Carbon Nanotube: Properties, Synthesis and Applications. Imperial Journal of Interdisciplinary Research. 2017; 3 (10): 61-70p.

Sarkar H, Bera B, Kundu S. Sleep Mode Transistor Sizing Effect of MTCMOS Inverter Circuit on Performance in Deep Submicron Technology. Global Journal of Trends in Engineering. 2015; 2 (4): 131-140p.

Bera B, Sarkar MD. Piezoelectric Effect, Piezotronics and Piezophototronics: A Review. Imperial Journal of Interdisciplinary Research. 2016; 2 (11): 1407-1410p.

Martin C. Template synthesis of electronically conductive polymer nanostructures. Acc Chem Res. 1995; 28 (2): 61–68p.

Guo DJ, Li HL. Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon. 2005; 43 (6): 1259–1264p.

Tan KH, Mohd RJ. Surface structure and optical property of amorphous carbon nanotubes hybridized with cadmium selenide quantum dots. Journal of Nanoparticle Research. 2013; 15 (9): 2- 12p.

Ebbesen TW, Ajayan PM. Large-scale synthesis of carbon nanotubes. Nature. 1992; 358: 220p.

Thess A, Lee R, Nikolaev P, Dai HJ, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE. Science. 1996; 273: 483p.

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004; 306 (5696): 666-669p.

Xu Y, Liu J. Graphene as Transparent Electrodes: Fabrication and New Emerging Applications. 2016; 12 (11): 1400–1419p.

Pumera M. Graphene-based nanomaterials for energy storage, Energy Environ. Sci. 2011; 4: 668-674p.

Zhang Y, Tang Q, He B, Yang P. Graphene enabled all-weather solar cells for electricity harvest from sun and rain. J. Mater. Chem. A. 2016; 4: 13235-13241p.

Kim H, Ahn JH. Graphene for flexible and wearable device applications. Carbon. 2017; 120: 244-257p.

Machado BF, Serp P. Graphene-based materials for catalysis. Catal. Sci. Technol. 2012; 2: 54-75p.

Miller JR, Outlaw RA, Holloway BC. Graphene Double-Layer Capacitor with ac Line-Filtering Performance. Science. 2010; 329 (5999): 1637-1639p.

Berman D, Erdemir A, Sumant AV. Graphene: a new emerging lubricant. Materials Today. 2014; 17 (1): 31-42p.

Copuroglu M, Aydogan P, Polat EO, Kocabas C, Süzer S. Gate-Tunable Photoemission from Graphene Transistors. Nano Lett. 2014; 14 (5): 2837–2842p.

Han Y, Xu Z, Gao C. Ultrathin Graphene Nanofiltration Membrane for Water Purification. Advanced Functional Materials. 2013; 23 (29): 3693–3700p.

Rodrigues GC, Zelenovskiy P, Romanyuk K, Luchkin S, Kopelevich Y, Kholkin A. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates. Nat. Commun. 2015; 7: 7572p.

Smith RJ, King PJ, Lotya M, Wirtz C, Khan U, De S, Neill AO, Duesberg GS, Grunlan JC, Moriarty G, Chen J, Wang J, Minett AI, Nicolosi V, Coleman JN. Adv. Mater. 2011; 23: 3944–3948p.

Coleman JN, Lotya M, Neill AO, Bergin AD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V. Science. 2011; 331: 568–571p.

Cunningham G, Lotya M, Cucinotta CS, Sanvito S, Bergin SD, Menzel R, Shaffer MSP, Coleman JN. ACS Nano. 2012; 6: 3468–3480p.

Bang GS, Nam KW, Kim JY, Shin J, Choi JW, Choi SY. Effective Liquid- Phase Exfoliation and Sodium Ion Battery Application of MoS2 Nanosheets. ACS Appl. Mater. Interfaces. 2014; 6: 7084−7089p.

Zhang XH, Wang C, Xue MQ, Lin BC, Ye X, Lei WN. Hydrothermal Synthesis and Characterization Of Ultrathin MoS2 nanosheets. Chalcogenide Letters. 2016; 13 (1): 27–34p.

Sun T, Li Z, Liu X, Ma L, Wang J, Yang S. Facile construction of 3D graphene/MoS2 composites as advanced electrode materials for supercapacitors. Journal of Power Sources. 2016; 331: 180-188p.

Wang L, Ma Y, Yang M, Qi Y. Titanium plate supported MoS2nanosheet arrays for super capacitor application. Applied Surface Science. 2017; 396: 1466-71p; .

Balendhran S, Ou JZ, Bhaskaran M, Sriram S, Ippolito S, Vasic Z, Kats E, Bhargava S, Zhuiykov S, Kalantar-zadeh K. Nanoscale, 2012; 4: 461–466p.

Lee YH, Zhang XQ, Zhang W, Chang MT, Lin CT, Chang KD, Yu YC, Wang JTW, Chang CS, Li LJ, Lin TW. Adv. Mater. 2012; 24: 2320–2325p.

Ling X, Lee YH, Lin Y, Fang W, Yu L, Dresselhaus MS, Kong J. Nano Lett. 2014; 14: 464–472p.

Ji Q, Zhang Y, Gao T, Zhang Y, Ma D, Liu M, Chen Y, Qiao X, Tan PH, Kan M, Feng J, Sun Q, Liu Z. Nano Lett. 2013; 13: 3870–3877p.

Zhang J, Yu H, Chen W, Tian X, Liu D, Cheng M, Xie G, Yang W, Yang R, Bai X, Shi D, Zhang G. ACS Nano. 2014; 8: 6024–6030p.

Lin YC, Zhang W, Huang JK, Liu KK, Lee YH, Liang CT, Chu CW, Li LJ. Nanoscale. 2012; 4: 6637–6641p.

Qiu d, Lee DU, Pak SW, Kim EK. Thin Solid Films. 2015; 587: 47–51p.

Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A, Baillargeat D. From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv. Funct. Mater. 2012; 22: 1385–1390p.

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science. 2004; 306: 666p .

Claudia Altavilla, Maria Sarno, and Paolo Ciambelli. A Novel Wet Chemistry Approach for the Synthesis of Hybrid 2D Free-Floating Single or Multilayer Nanosheets of MS2@oleylamine (MdMo, W). Chem. Mater. 2011; 23: 3879–3885p. dx.doi.org/10.1021/cm200837g.

Ashish Kumar Mishra, K. V. Lakshmi & Liping Huang. Eco-friendly synthesis of metal dichalcogenides nanosheets and their environmental remediation potential driven by visible light. Scientific Reports | 2015; 5: 15718p. DOI: 10.1038/srep15718.

M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, H. W. Kroto. J. Phys. Chem. Solids 1993; 54: 1841p.

Tan Kim Han. synthesis and characterizations of amorphous carbon nanotubes/cadmium selenide quantum dots hybrids materials. master thesis, university of Malaya. 2012; 1-120p

P. Cui, B. Xie, X. Li, M. Li, Y. Li, Y. Wang, Z. Liu, X. Liu, J. Huang, D. Song, J.M.M bengue. Anatase/TiO2-B hybrid microspheres constructed from ultrathin nanosheets: facile synthesis and application for fast lithium ion storage. Cryst Eng Comm 2015; 17: 7930–7937p.

T. Stephenson, Z. Li, B. Olsen, D. Mitlin. Lithium ion battery applications ofmolybdenum disulfide (MoS2) nanocomposites. Energ. Environ. Sci. 2014; 7: 209–231p.

H. Hwang, H. Kim, J. Cho. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011; 11: 4826–4830p.

R. Dominko, D. Arcon, A. Mrzel, A. Zorko, P. Cevc, P. Venturini, M. Gaberscek,M. Ramskar, D. Mihailovic. Dichalcogenide nanotube electrodes for Li-ionbatteries. ChemInform 2003; 34: 1531–1534p.

H. Li, W. Li, L. Ma, W. Chen, J. Wang. Electrochemical lithiation/delithiation performances of 3D flowerlike MoS2 powders prepared by ionic liquid assisted hydrothermal route, J. Alloy Compd. 2009; 471: 442–447p.

Y. Kim, J.B. Goodenough. Lithium insertion into transition-metal mono sulfides: tuning the position of the metal 4s band. J. Phys. Chem. C 2008; 112: 15060–15064p.

X. Wang, Q. Xiang, B. Liu, L. Wang, T. Luo, D. Chen, G. Shen. TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium- ion batteries. Sci. Rep. 2013; 3: 10454– 10461p.

L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E.J. Cairns, Y. Zhang. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011; 133: 18522– 18525p.

Q. Fan, P.J. Chupas, M.S. Whittingham. Characterization of amorphous and crystalline tin–cobalt anodes. Electro chem. Solid State 2007; 10(12): A274- A278p.

T. Matsuyama, A. Hayashi, T. Ozaki, S. Mori, M. Tatsumisago. Electro chemical properties of all-solid-state lithium batteries with amorphous MoS3electrodes prepared by mechanical milling. J. Mater. Chem. A. 2015; 3: 14142–14147p.

E. Hüger, L. Dörrer, J. Rahn, T. Panzner, J. Stahn, G. Lilienkamp, H. Schmidt. Lithium transport through nanosized amorphous silicon layers. Nano Lett. 2013: 13: 1237–1244p.

X. Li, X. Meng, J. Liu, D. Geng, Y. Zhang, M.N. Banis, Y. Li, J. Yang, R. Li, X. Sun,M. Cai, M.W. Verbrugge. Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv. Funct. Mater. 2012; 22: 1647–1654p.

H. Ghassemi, M. Au, N. Chen, P.A. Heiden, R.S. Yassar. In situ electro chemical lithiation/delithiation observation of individual amorphous Si nanorods, ACS Nano. 2011; 5: 7805– 7811p.

Y. Jiang, D. Zhang, Y. Li, T. Yuan, N. Bahlawane, C. Liang, W. Sun, Y. Lu, M. Yan. Amorphous Fe2O3 as a high- capacity, high-rate and long-life anode materialfor lithium ion batteries. Nano Energy. 2014; 4: 23–30p.

J. Guo, Q. Liu, C. Wang, M.R. Zachariah. Interdispersed amorphousMnOx–carbon nanocomposites with superior electrochemical performance aslithium- storage material. Adv. Funct. Mater. 2012; 22: 803–811p.

J.H. Ku, J.H. Ryu, S.H. Kim, O.H. Han, S.M. Oh. Reversible lithium storage with high mobility at structural defects in amorphous molybdenum dioxide electrode. Adv. Funct. Mater. 2012; 22: 3658–3664p.

F. Zhou, S. Xin, H.-W. Liang, L.-T. Song, S.-H. Yu. Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and enhanced electrochemical performance. Angew. Chem. Int. Ed. 2014; 53: 11552–11556p.

D. Shujiang, C. Jun Song, X.W.D. Lou. Glucose-assisted growth of MoS2nanosheets on CNT backbone for improved lithium storage properties, Chemistry. Weinheim an der Bergstrasse, Germany. 2011; 17: 13142–13145p.

K. Chang, W. Chen. L-Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries, ACS Nano. 2011; 5: 4720– 4728p.

X. Zhou, Z. Wang, W. Chen, L. Ma, D. Chen, J.Y. Lee. Facile synthesis and electrochemical properties of two dimensional layered MoS2/graphene composite for reversible lithium storage. J. Power Sources 2014; 251: 264–268p.

P. Seung-Keun, Y. Seung-Ho, W. Seunghee, Q. Bo, L. Dong-Chan, K.M. Kun, S.Yung-Eun, P. Yuanzhe. A simple L-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries. Dalton Trans. 2012; 42: 2399– 2405p.

Y. Shi, Y. Wang, J.I. Wong, A.Y.S. Tan, C.-L. Hsu, L.-J. Li, Y.-C. Lu, H.Y. Yang. Self-assembly of hierarchical MoSx/CNT nanocomposites (2<x<3):towards high performance anode materials for lithium ion batteries. Sci. Rep. 2013; 3: 2169p

Z. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng, Z. Tao, J. Chen. MoS2 nano flowers with expanded interlayers as high-performance anodes for sodium-Ion batteries. Angew. Chem. Int. Ed. 2014; 53: 12794–12798p.

R. R. Chianelli, E. B. Prestridge, T. A. Pecoraro, and J. P. DeNeufville. Science 1979; 203: 1105–1107p.

J. L. Verble, T. J. Wietling, and P. R. Reed. Rigid-layer lattice vibrations and van der waals bonding in hexagonal MoS2. Solid State Comm. 1972; 11: 941- 944p.

V. R. Surisetty, A. Tavasoli, and A. K. Dalai. Synthesis of higher alcohols from syngas over alkali promoted MoS2 catalysts supported on multi-walled carbon nanotubes. Appl. Catal. A-Gen. 2009: 365: 243–251p.

Y. Ye, J. Chen, and H. Zhou. An investigation of friction and wear performances of bonded molybdenum disulfide solid film lubricants in fretting conditions. Wear 2009; 266: 859–864p.

J. Yan, H. Zhou, P. Yu, L. Su, and L. Mao. A general electrochemical approach to deposition of metal hydroxide/oxide nanostructures onto carbon nanotubes. Electrochem. Commun. 2018; 10: 761– 765p.

C. Feng, J. Ma, H. Li, R. Zeng, Z. Guo, and H. Liu. Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater. Res. Bull. 2009; 44: 1811–1815p.

N. Elizondo-Villarreal, R. Vel´azquez- Castillo, D. H. Galv´an, A. Camacho, andM. Jos´e Yacam´an. Structure and

catalytic properties of molybdenum sulfide nanoplatelets. Appl. Catal. A-Gen. 2017; 328: 88–97p.

X. Zhang, B. Luster, A. Church, C. Muratore, A. A. Voevodin, P. Kohli, S. Aouadi, and S. Talapatra. Carbon Nanotube-MoS2 Composites as Solid Lubricants. Appl. Mater. Inter. 2009:3: 735–739p.

W. Li, E. Shi, J. Ko, Z. Chen, H. Ogino, and T. Fukuda. Hydrothermal synthesis of MoS2 nanowires. J. Cryst. Growth 2013; 250: 418–422p.

K. P. Loh, H. Zhang, W. Z. Chen, and W. Ji. Templated deposition of MoS2 nanotubules using single source precursor and studies of their optical limiting properties. J. Phys. Chem. B. 2016; 110: 1235–1239p.

L. Ma, L. M. Xu, X. Y. Xu, Y. L. Luo, andW. X. Chen. Synthesis and characterization of flowerlike MoS2 microspheres by a facile hydrothermal route. Mater. Lett. 2009; 63: 2022–2024p.

G. Chu, G. Bian, Y. Fu, and Z. Zhang. Preparation and structural characterization of nano-sized amorphous powders of MoS by γ -irradiation method. Mater. Lett. 2000; 43: 81–86p.

Z. Wu, D. Wang, and A. Sun. PreparationofMoS2 nanoflakes by a novel mechanical activation method. J. Cryst. Growth. 2010; 312: 340–343p.

M. Virˇsek, A. Jesih, I. Miloˇsevi´c, M. Damnjanovi´c, and M. Remˇskar. Raman scattering of the MoS2 and WS2 single nanotubes. Surf. Sci. 2007; 601: 2868– 2872p.

X. Feng, Q. Tang, J. Zhou, J. Fang, P. Ding, L. Sun and L. Shi, Cryst. Res. Technol. 2013; 48: 363–368p.

C. Muratore, V. Varshney, J. J. Gengler, J. Hu, J. E. Bultman, A. K. Roy, B. L. Farmer and A. A. Voevodin. Phys. Chem. 2014; 16: 1008–1014p.

Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two- dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012; 7: 699–712p.

Kim, S. et al. High-mobility and low- power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012; 3: 1011p.

Matte, H. S. S. R. et al. MoS2 and WS2 Analogues of Graphene. Angew. Chem. 2010; 122: 4153–4156p.

Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA. 2005; 102: 10451–10453p.

Li, H. et al. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 2012; 8: 63–67p.

Huang, X., Zeng, Z. & Zhang, H. Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 2013; 42: 1934–1946p.

Wilcoxon, J. P., Thurston T. R. & Martin J. E. Applications of metal and semiconductor nanoclusters as thermal and photocatalysts. Nanostruct. Mater. 1999; 12: 993–997p.

Thurston, T. R. & Wilcoxon, J. P. Photooxidation of organic chemicals catalyzed by nanoscale MoS2. J. Phys. Chem. B 1999;

: 11–17p. 103. Tan, Y. et al. The combinations of hollow MoS2 micro@nanospheres: one-step synthesis, excellent photocatalytic and humidity sensing properties. J. Mater. Chem. C. 2014; 2: 5422–5430p.

Liu, K. K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012; 12: 1538–1544p.

Lee, Y. H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012; 24: 2320– 2325p.

Backes, C. et al. Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets. Nat. Commun. 2014; 5: 4576p.

Peimyoo, N. et al. Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy. Nano Res. 2014; 8(4): 1210-1221p. doi: 10.1007/s12274-014-0602-0.

Yan, R. et al. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano. 2014; 8: 986–993p.

Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfideTS2. Phys. Rev. B 2011; 83(24): 245213p.

Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically ThinMoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010; 105: 136805p.

Ramakrishna Matte, H. S. S. et al. MoS2 and WS2 Analogues of Graphene. Angew. Chem. 2010; 122: 4153–4156p.

Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2015; 10: 534–540p.

Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010; 10: 1271–1275p.

J.M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries. Nature. 2001; 414: 359–367p.

A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. van Schalkwijk. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005; 4: 366–377p.

X. Li, Y. Feng, M. Li, W. Li, H. Wei, D. Song. Smart hybrids of Zn2GeO4nanoparticles and ultrathin g- C3N4 layers: synergistic lithium storage and excellent electrochemical performance. Adv. Funct. Mater. 2015; 25: 6858–6866p.

M. Armand, J.M. Tarascon. Building better batteries. Nature. 2008; 451: 652– 657p.

B. Kang, G. Ceder. Battery materials for ultrafast charging and discharging. Nature. 2009; 458: 190–193p.

X. Li, W. Li, M. Li, P. Cui, D. Chen, T. Gengenbach, L. Chu, H. Liu, G. Song. Glucose-assisted synthesis of the hierarchical TiO2 nanowire@MoS2nanosheet nanocomposite and its synergistic lithium storage performance. J.Mater. Chem. A 2015; 3: 2762–2769p.

D. Larcher, S. Beattie, M. Morcrette, K. Edstrom, J.-C. Jumas, J.-M. Tarascon. Recent findings and prospects in the field of pure metals as negativeelectrodes for Li-ion batteries. J. Mater. Chem. 2007; 17: 3759–3772p.

Y. Feng, X. Li, Z. Shao, H. Wang. Morphology-dependent performance of Zn2GeO4 as a high-performance anode material for rechargeable lithium ion batteries. J. Mater. Chem. A 3 2015; 3: 15274–15279p.

L. Chu, M. Li, X. Li, Y. Wang, Z. Wan, S. Dou, D. Song, Y. Li, B. Jiang. High performance NiO microsphere anode assembled from porous nanosheets for lithium-ion batteries. RSC Adv. 2015; 5: 49765–49770p.

P. Cui, B. Xie, X. Li, M. Li, Y. Li, Y. Wang, Z. Liu, X. Liu, J. Huang, D. Song, J.M.M bengue. Anatase/TiO2-B hybrid microspheres constructed from ultrathin nanosheets: facile synthesis and application for fast lithium ion storage. Cryst Eng Comm. 2015; 17: 7930– 7937p.

T. Stephenson, Z. Li, B. Olsen, D. Mitlin. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energ. Environ. Sci. 2014; 7: 209–231p.

H. Hwang, H. Kim, J. Cho. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011; 11: 4826–4830p.

R. Dominko, D. Arcon, A. Mrzel, A. Zorko, P. Cevc, P. Venturini, M. Gaberscek,M. Ramskar, D. Mihailovic. Dichalcogenide nanotube electrodes for Li-ion batteries. Chem Inform. 2003; 34: 1531–1534p.

H. Li, W. Li, L. Ma, W. Chen, J. Wang. Electrochemical lithiation/delithiation performances of 3D flowerlike MoS2 powders prepared by ionic liquidassisted hydrothermal route. J. Alloy Compd. 2009; 471: 442–447p.

Y. Kim, J.B. Goodenough. Lithium insertion into transition- metalmonosulfides: tuning the position of

the metal 4s band. J. Phys. Chem. C. 2008; 112: 15060–15064p.

X. Wang, Q. Xiang, B. Liu, L. Wang, T. Luo, D. Chen, G. Shen. TiO2 modified FeSnanostructures with enhanced electrochemical performance for lithium- ion batteries. Sci. Rep. 2013; 3: 10454– 10461p.

L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E.J. Cairns, Y. Zhang. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfurcells. J. Am. Chem. Soc. 2011; 133: 18522– 18525p.

Q. Fan, P.J. Chupas, M.S. Whittingham. Characterization of amorphous andcrystalline tin–cobalt anodes, Electrochem. Solid State 2007; 10: A24p.

T. Matsuyama, A. Hayashi, T. Ozaki, S. Mori, M. Tatsumisago. Electro chemical properties of all-solid-state lithium batteries with amorphous MoS3electrodes prepared by mechanical milling. J. Mater. Chem. A. 2015; 3: 14142–14147p.

E. Hüger, L. Dörrer, J. Rahn, T. Panzner, J. Stahn, G. Lilienkamp, H. Schmidt. Lithium transport through nanosized amorphous silicon layers. Nano Lett. 2013; 13: 1237–1244p.

X. Li, X. Meng, J. Liu, D. Geng, Y. Zhang, M.N. Banis, Y. Li, J. Yang, R. Li, X. Sun,M. Cai, M.W. Verbrugge. Tin oxide with controlled morphology andcrystallinity by atomic layer deposition onto graphene nanosheets forenhanced lithium storage. Adv. Funct. Mater. 2012; 22: 1647–1654p.

H. Ghassemi, M. Au, N. Chen, P.A. Heiden, R.S. Yassar. In situ electro chemical lithiation/delithiation observation of individual amorphous Si nanorods. ACS Nano. 2011; 5: 7805– 7811p.

Y. Jiang, D. Zhang, Y. Li, T. Yuan, N. Bahlawane, C. Liang, W. Sun, Y. Lu, M. Yan. Amorphous Fe2O3 as a high- capacity, high-rate and long-life anode materialfor lithium ion batteries. Nano Energy. 2014; 4: 23–30p.

J. Guo, Q. Liu, C. Wang, M.R. Zachariah. Interdispersed amorphousMnOx–carbon nanocomposites with superior electrochemical performance aslithium- storage material. Adv. Funct. Mater. 2012; 22: 803–811p.

J.H. Ku, J.H. Ryu, S.H. Kim, O.H. Han, S.M. Oh. Reversible lithium storage withhigh mobility at structural defects in amorphous molybdenum dioxide electrode. Adv. Funct. Mater. 2012; 22: 3658–3664p.

F. Zhou, S. Xin, H.-W. Liang, L.-T. Song, S.-H. Yu. Carbon nanofibers decoratedwith molybdenum disulfide nanosheets: synergistic lithium storage andenhanced electrochemical performance. Angew. Chem. Int. Ed. 2014; 53: 11552–11556p.

D. Shujiang, C. Jun Song, X.W.D. Lou. Glucose-assisted growth of MoS2nanosheets on CNT backbone for improved lithium storage properties. Chemistry (Weinheim an der Bergstrasse, Germany). 2011; 17: 13142–13145p.

K. Chang, W. Chen. L-Cysteine-assisted synthesis of layered MoS2/ graphenecomposites with excellent electrochemical performances for lithium ionbatteries. ACS Nano. 2011; 5: 4720– 4728p.

X. Zhou, Z. Wang, W. Chen, L. Ma, D. Chen, J.Y. Lee. Facile synthesis and electrochemical properties of two dimensional layered MoS2/ graphene composite for reversible lithium storage. J. Power Sources. 2014; 251: 264–268p

P. Seung-Keun, Y. Seung-Ho, W. Seunghee, Q. Bo, L. Dong-Chan, K.M. Kun, S.Yung-Eun, P. Yuanzhe. A simple L-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries. Dalton Trans. 2012; 42(7): 2399–2405p.

Shi Y, Wang Y, Wong JI, Tan AYS, Hsu CL, Li LJ, Lu YC, Yang HY. Self- assembly of hierarchical MoSx/CNT nanocomposites (2<x<3):towards high performance anode materials for lithium ion batteries, Sci. Rep. 2013; 3: 2169p.

Hu Z, Wang L, Zhang K, Wang J, Cheng F, Tao Z, Chen J. MoS2 nanoflowerswith expanded interlayers as high-performance anodes for sodium-Ionbatteries. Angew. Chem. Int. 2014; 53: 12794–12798p.

Chianelli RR, Prestridge EB, Pecoraro TA, DeNeufville JP. Science 1979; 203: 1105–1107p.

Verble JL, Wietling TJ, Reed PR. Rigid- layer lattice vibrations and van der waals bonding in hexagonal MoS2. Solid State Comm. 1972; 11: 941–944p.

Surisetty VR, Tavasoli A, Dalai AK. Synthesis of higher alcohols from syngas over alkali promoted MoS2 catalysts supported on multi-walled carbon nanotubes. Appl. Catal. A-Gen. 2009; 365: 243–251p.

Ye Y, Chen J, Zhou H. An investigation of friction and wear performances of bonded molybdenum disulfide solid film lubricants in fretting conditions. Wear. 2009; 266: 859–864p.

Yan J, Zhou H, Yu P, Su L, Mao L. A general electrochemical approach to deposition of metal hydroxide/oxide nanostructures onto carbon nanotubes. Electrochem. Commun. 2008; 10: 761– 765p.

Feng C, Ma J, Li H, Zeng R, Guo Z, Liu H. Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater. Res. Bull. 2009; 44: 1811–1815p.

Elizondo-Villarreal N, Vel´azquez- Castillo R, Galv´an DH, Camacho A, Yacaman MJ. Structure and catalytic properties of molybdenum sulfide nanoplatelets. Appl. Catal. A-Gen. 2007; 328: 88–97p.

Zhang X, Luster B, Church A, Muratore C, Voevodin AA, Kohli P, Aouadi S, Talapatra S. Carbon Nanotube-MoS2 Composites as Solid Lubricants. Appl. Mater. Inter. 2009; 3: 735–739p.

Li W, Shi E, Ko J, Chen Z, Ogino H, Fukuda T. Hydrothermal synthesis of MoS2 nanowires. J. Cryst. Growth. 2003; 250: 418–422p.

Loh KP, Zhang H, Chen WZ, Ji W. Templated deposition of MoS2 nanotubules using single source precursorand studies of their optical limiting properties. J. Phys. Chem. B. 2006; 110: 1235–1239p.

Ma L, Xu LM, Xu XY, Luo YL, Chen WX. Synthesis and characterization of flowerlike MoS2 microspheres by a facile hydrothermal route. Mater. Lett. 2009; 63: 2022–2024p.

Chu G, Bian G, Fu Y, Zhang Z. Preparation and structural characterization of nano-sized amorphous powders of MoS by γ -irradiation method. Mater. Lett. 2000; 43: 81–86p.

Wu Z, Wang D, Sun A. PreparationofMoS2 nanoflakes by a novel mechanical activation method. J. Cryst. Growth. 2010; 312: 340–343p.

Virˇsek M, Jesih A, Miloˇsevi´c I, Damnjanovi´c M, Remˇskar M. Raman scattering of the MoS2 and WS2 single nanotubes. Surf. Sci. 2007; 601: 2868– 2872p.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Nano Trends-A Journal of Nano Technology & Its Applications