Open Access Open Access  Restricted Access Subscription or Fee Access

Impact of Barrier Thickness and Height on the Current-Voltage (I-V) Characteristics of GaAs/Ga1-xAlxAs Quantum Cascaded Laser

Manish Kumar Yadav, B. P. Pandey, Dharmendra Kumar

Abstract


Quantum Cascaded Laser (QCL) physics is different from a diode laser. In diode, laser transitions occur between the conduction band and valance band of the materials whereas in quantum-cascade laser transitions occur between states within a single quantum well. This paper presents the effect of barriers thickness on the I-V characteristics of GaAs/Ga1-xAlxAs based QCL. The calculated I-V characteristics findings predict the output current modulation capability of the proposed GaAs/Ga1-xAlxAs QCL. Further, this paper presents the effect of variation in composition ‘x’ of the barrier height on I-V characteristics. In this study, GaAs/Ga1-xAlxAs QCL structures have been theoretically investigated at operating temperatures, T=10K and T=177K. The calculated results show that GaAs/Ga1-xAlxAs QCL gives a stable performance and have high tuning capability at lower temperature and less stable at a higher temperature in terms of produced output current. 


Keywords


Alloy composition, i-v characteristics, resonant tunneling, transmission coefficient,

Full Text:

PDF

References


Faist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY. Quantum cascade laser. Science. 1994; 264: 553- 556p.

Jirauschek C, Kubis T. Modeling techniques for quantum cascade lasers. Appl. Phys. Rev. 2014; 1: 011307p.

Faist J. Quantum Cascade Lasers. 1st edition. UK: Oxford Press; 2013.

Winge DO, Franckie M, Wacker A. Simulating terahertz quantum cascade lasers: Trend from samples from different labs. J. of Appl. Physics. 2016; 120: 114302p.

Bismuto A, Terazzi R, Beck M, Faist J. Electrically tunable, high performance quantum cascade laser. Appl. Phys. Lett. 2010; 96: 141105p.

Albo A, Hu Q, Reno JL. Room temperature negative differential resistance in terahertz quantum cascade laser structures. Appl. Phys. Lett. 2016; 109: 081102p.

Albo A, Flores YV. Temperature-driven enhancement of the stimulated emission rate in terahertz quantum cascade lasers. IEEE J. of Quant. Elect. 2017; 53 (1): 2300105p.

Flores YV, Kurlov SS, Elagin M, Semtsiv MP, Masselink WT. The role of electron temperature in the leakage current in QCLs and its impact on the quantum efficiency. Proc. SPIE. 2014; 9002: 90021R-1p.

Bandyopadhyay N, Bai Y, Slivken S, Razeghi M. High power operation of λ 5.2–11μm strain balanced quantum cascade lasers based on the same material composition. Appl. Phys. Lett. 2014; 105 (7): 071106p.

Vitiello MS, Scamarcio G, Spagnolo V, Worrall C, Beere HE, Ritchie DA, Sirtori C, Alton J, Barbieri S. Subband electronic temperatures and electron-lattice energy relaxation in terahertz quantum cascade

lasers with different conduction band offsets. Appl. Phys. Lett. 2006; 89: 131114p.

Bahriz M, Lollia G, Laffaille P, Baranov AN, Teissier R. InAs/AlSb quantum cascade lasers operating near 20 μm. Electron. Lett. 2013; 49 (19): 1238p.

Devenson J, Teissier R, Cathabard O, Baranov AN. InAs/AlSb quantum cascade lasers emitting below 3μm. Appl. Phys. Lett. 2007; 90 (11): 111118p.

Albo A, Hu Q. Carrier leakage into the continuum in diagonal GaAs/Al0.15GaAs terahertz quantum cascade lasers. Appl. Phys. Lett. 2015; 107: 241101p.

Patel CKN, Lyakh A, Maulini R, Tsekoun A, Pranalytica BT. QCL as a Game Changer in MWIR and LWIR Military and Homeland Security Applications. Proc. of SPIE. 2012; 8373: 83732Ep.

Wysocki G, Lewicki R, Curl RF, Tittel FK, Diehl L, Capasso F, Troccoli M, Hofler G, Bour D, Corzine S, Maulini R, Giovannini M, Faist J. Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing. Physics letters. 2008; B92: 305p.

Kim SM, Hatami F, Harris JS, Kurian AW, Ford J, Scalari G, Giovannini M, Hoyler N, Faist J, Harris G. Biomedical terahertz imaging with a quantum cascade laser. Applied physics letters. 2006; 88: 153903p.

Tittel FK, Bakhirkin Y, Curl RF, Kosterev A, Lewicki R, So S, Wysocki G. Quantum Cascade Laser based Trace Gas sensor Technology: Recent Advances and Applications. IEEE Sensor Conference. 2007; 7: 1334-1336p.

Pavlov HHW, Richter SG, Semenov H, Mahler AD, Tredicicci L, Beere A, Ritchie HE. Molecular Spectroscopy with Terahertz Quantum Cascaded Lasers. Journal of Nanoelectronics and Optoelectronics. 2007; 2 (1): 101p.

Flores YV, Albo A. Impact of interface roughness scattering on the performance of GaAs/Ga1-XAlXAs Terahertz Quantum cascade Lasers. IEEE journal of Quantum Electronics. 2017; 53 (3): p.

Harrison P, Valavanis A. Quantum Well, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructure. 4th Edition. West Sussex, United Kingdom: Hoboken, NJ: Johnwiley & Sons, Inc.; 2016.

Mukherjee S, Karmakar R, Deyasi A. Theoretical Computation of Transmission Coefficient of Double Quantum Well Triple Barrier Structure in Presence of Electric Field. International J. of Soft Computing and Engineering. 2011; 1: 41- 44p.

Mukherjee K, Das NR. Effect of Barrier Asymmetry on Tunneling Current in Double Barrier Quantum Well Structure. International Conference on Emerging Trends in Electronic and Photonic Devices & Systems. 2009. pp. 1-4

Yang L, Li Y, Wang Y, Xu S, Hao Y. Asymmetric quantum-well structures for AlGaN/GaN/AlGaN resonant tunneling diodes. J. Appl. Phys. 2016; 119: 164501- 8p.

Jiang A, Matyas A, Vijayraghavan K, Jirauschek C, Wasilewski ZR, Belkin MA. Experimental investigation of terahertz quantum cascade laser with variable barrier heights. J Appl Phys. 2016; 115: 163103-5p.

Deyasi A, Ghosh GK. Effect of Dimension & Material Composition on Transmission Coefficient and Tunneling Current of Double Quantum Barrier Structure with Band Nonparabolicity. Bonfring International Journal of Power Systems and Integrated Circuits. 2012; 2 (3): 1-6p.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Nano Trends-A Journal of Nano Technology & Its Applications