Open Access Open Access  Restricted Access Subscription or Fee Access

Recent Advancements in Quantum Dot Sensitized Solar Cells

Satyendra Prasad, Sadanand ., Pooja Lohia, D.K. Dwivedi

Abstract


In the last few decades, Quantum Dot Sensitized Solar Cells (QDSSCs) have attracted attention of researchers worldwide and extensive work has been done to improve the efficiency of the solar cell.QDSSCs is considered as the best alternative to the other solar cell devices due to its photovoltaic properties with the combination of miniaturization. The best property of quantum dot is the size and bandgap tunability and it makes quantum dots (QDs) a very good absorber material. Recent works on QDSSCs have shown great improvements, resulting in a power conversion efficiency increase from less than 1% to 13% which is a great achievement. However, Quantumm dot solar cell still lag the traditional single-junction solar cell in terms of power conversion efficiencies (PCE). Here, we are reviewing the recent developments made in various QDSSCs which are prepared from different materials for electron transport layer (ETL), hole transport layer (HTL) and excitonic absorber (QDs). An overview of QDSSCs and its device architecture are also given over here so that the reader could understand and gets benefited from the present review.


Keywords


Quantum dot, Solar cell, ETL, HTL, Absorber layer, Efficiency.

Full Text:

PDF

References


Dwivedi, D.K., 2020. Numerical modeling for earth-abundant highly efficient solar photovoltaic cell of non-toxic buffer layer. Optical Materials, 109, p.110409.

Hyun, B.R., Zhong, Y.W., Bartnik, A.C., Sun, L., Abruna, H.D., Wise, F.W., Goodreau, J.D., Matthews, J.R., Leslie, T.M. and Borrelli, N.F., 2008. Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. ACS nano, 2(11), pp.2206-2212.

Pandey, R., Khanna, A., Singh, K., Patel, S.K., Singh, H. and Madan, J., 2020. Device simulations: Toward the design of > 13% efficient PbS colloidal quantum dot solar cell. Solar Energy, 207, pp.893-902.

Dwivedi, D.K., 2019. Theoretical investigation on enhancement of output performance of CZTSSe based solar cell. Solar energy, 193, pp.442-451.

Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanematsu, M., Uzu, H. and Yamamoto, K., 2017. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature energy, 2(5), pp.1-8.

Yan, C., Huang, J., Sun, K., Johnston, S., Zhang, Y., Sun, H., Pu, A., He, M., Liu, F., Eder, K. and Yang, L., 2018. Cu 2 ZnSnS 4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nature Energy, 3(9), pp.764-772.

Solar, F., 2014. First solar builds the highest efficiency thin film PV cell on record. Press release, https://investor.firstsolar.com/news/press-release-details/2014/First Solar-Builds-the-Highest-Efficiency-Thin-Film-PV-Cell-on Record/default. aspx.

Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T. and Sugimoto, H., 2019. Cd-free Cu (In, Ga)(Se, S) 2 thin-film solar cell with record efficiency of 23.35%. IEEE Journal of Photovoltaics, 9(6),

pp.1863-1867.

Kayes, B.M., Nie, H., Twist, R., Spruytte, S.G., Reinhardt, F., Kizilyalli, I.C. and Higashi, G.S., 2011, June. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In 2011 37th IEEE Photovoltaic Specialists Conference (pp. 000004-000008). IEEE.

ANU researchers set solar record with next-gen cells. (2019, November 27), https://www.anu.edu.au/news/all-news/anu researchers-set-solar-record-with-next-gen-cells

Matsui, T., Bidiville, A., Maejima, K., Sai, H., Koida, T., Suezaki, T., atsumoto, M., Saito, K., Yoshida, I. and Kondo, M., 2015. High efficiency amorphous silicon solar cells: impact of deposition rate on metastability. Applied Physics Letters, 106(5), p.053901. .

Komiya, R., Fukui, A., Murofushi, N., Koide, N., Yamanaka, R. and Katayama, H., 2011, November. Improvement of the conversion efficiency of a monolithic type dye-sensitized solar cell module. In Technical Digest, 21st International Photovoltaic Science and Engineering Conference (Vol. 2).

Yuan, J., Zhang, Y., Zhou, L., Zhang, G., Yip, H.L., Lau, T.K., Lu, X., Zhu, C., Peng, H., Johnson, P.A. and Leclerc, M., 2019. Single junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 3(4), pp.1140-1151.

Pandikumar, A. and Ramaraj, R. eds., 2018. Rational Design of Solar Cells for Efficient Solar Energy Conversion.

Green, M., Dunlop, E., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N. and Hao, X., 2021. Solar cell efficiency tables (version 57). Progress in photovoltaics: research and applications, 29(1), pp.3-15.

Emin, S., Singh, S.P., Han, L., Satoh, N. and Islam, A., 2011. Colloidal quantum dot solar cells. Solar Energy, 85(6), pp.1264-1282. 17. Vogel, R., Pohl, K. and Weller, H., 1990. Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS. Chemical Physics Letters, 174(3-4), pp.241-246.

Mishra, A., Fischer, M.K. and Bäuerle, P., 2009. Metal-free organic dyes for dye-sensitized solar cells: From structure: Property relationships to design rules. Angewandte Chemie International Edition, 48(14), pp.2474-2499.

Yang, J. and Zhong, X., 2016. CdTe based quantum dot sensitized solar cells with efficiency exceeding 7% fabricated from quantum dots prepared in aqueous media. Journal of Materials Chemistry A, 4(42),

pp.16553-16561.

Zhang, L., Pan, Z., Wang, W., Du, J., Ren, Z., Shen, Q. and Zhong, X., 2017. Copper deficient Zn–Cu–In–Se quantum dot sensitized solar cells for high efficiency. Journal of Materials Chemistry A, 5(40), pp.21442-21451.

Shen, X., Jia, J., Lin, Y. and Zhou, X., 2015. Enhanced performance of CdTe quantum dot sensitized solar cell via anion exchanges. Journal of Power Sources, 277, pp.215-221.

Wang, H., Kubo, T., Nakazaki, J., Kinoshita, T. and Segawa, H., 2013. PbS-quantum-dot-based heterojunction solar cells utilizing ZnO nanowires for high external quantum efficiency in the near-infrared region. The Journal of Physical Chemistry Letters, 4(15), pp.2455 2460.

P. Guyot-Sionnest, "Colloidal quantum dots", Comptes Rendus Physique, vol. 9, no. 8, pp. 777-787, 2008.

Mora-Seró, I. and Bisquert, J., 2010. Breakthroughs in the development of semiconductor-sensitized solar cells. The journal of physical chemistry letters, 1(20), pp.3046-3052.

Xing, M., Wei, Y., Wang, R. and Zhang, Z., 2021. Study on the performance of ZMO/PbS quantum dot heterojunction solar cells. Solar Energy, 213, pp.53-58.

Tyagi, J., Gupta, H. and Purohit, L.P., 2020. Cascade Structured ZnO/TiO2/CdS quantum dot sensitized solar cell. Solid State Sciences, 102, p.106176.

Zhang, H., Cheng, K., Hou, Y.M., Fang, Z., Pan, Z.X., Wu, W.J., Hua, J.L. and Zhong, X.H., 2012. Efficient CdSe quantum dot sensitized solar cells prepared by a postsynthesis assembly approach.

chemical Communications, 48(91), pp.11235-11237.

Jiao, S., Shen, Q., Mora-Sero, I., Wang, J., Pan, Z., Zhao, K., Kuga, Y., Zhong, X. and Bisquert, J., 2015. Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells. ACS nano, 9(1), pp.908 915.

Khan, J., Yang, X., Qiao, K., Deng, H., Zhang, J., Liu, Z., Ahmad, W., Zhang, J., Li, D., Liu, H. and Song, H., 2017. Low-temperature processed SnO2–Cl for efficient PbS quantum-dot solar cells via defect passivation. Journal of Materials Chemistry A, 5(33), pp.17240-17247.

Lan, Z., Liu, L., Huang, M., Wu, J. and Lin, J., 2015. Preparation of nano-flower-like SnO 2 particles and their applications in efficient CdS quantum dots sensitized solar cells. Journal of Materials Science: Materials in Electronics, 26(10), pp.7914-7920.

Wu, J.M., Hayakawa, S., Tsuru, K. and Osaka, A., 2002. In vitro bioactivity of anatase film obtained by direct deposition from aqueous titanium tetrafluoride solutions. Thin Solid Films, 414(2), pp.275-280. 32. Tian, J., Zhang, Q., Uchaker, E., Gao, R., Qu, X., Zhang, S. and Cao, G., 2013. Architectured ZnO photoelectrode for high efficiency quantum dot sensitized solar cells. Energy & Environmental Science, 6(12), pp.3542-3547.

Tian, J., Zhang, Q., Uchaker, E., Gao, R., Qu, X., Zhang, S. and Cao, G., 2013. Architectured ZnO photoelectrode for high efficiency quantum dot sensitized solar cells. Energy & Environmental Science, 6(12), pp.3542-3547.

Gubbala, S., Chakrapani, V., Kumar, V. and Sunkara, M.K., 2008. Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires. Advanced Functional Materials, 18(16), pp.2411-2418.

Vogel, R., Hoyer, P. and Weller, H., 2002. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. The Journal of Physical Chemistry, 98(12), pp.3183-3188.

Lee, Y.S., Gopi, C.V., Reddy, A.E., Nagaraju, C. and Kim, H.J., 2017. High performance of TiO 2/CdS quantum dot sensitized solar cells with a Cu–ZnS passivation layer. New Journal of Chemistry, 41(5), pp.1914-1917.

Hou, J., Zhao, H., Huang, F., Jing, Q., Cao, H., Wu, Q., Peng, S. and Cao, G., 2016. High performance of Mn-doped CdSe quantum dot sensitized solar cells based on the vertical ZnO nanorod arrays. Journal of Power Sources, 325, pp.438-445.

Sahu, A., Garg, A. and Dixit, A., 2020. A review on quantum dot sensitized solar cells: Past, present and future towards carrier multiplication with a possibility for higher efficiency. Solar Energy, 203, pp.210-239.

Huo, Z., Tao, L., Wang, S., Wei, J., Zhu, J., Dong, W., Liu, F., Chen, S., Zhang, B. and Dai, S., 2015. A novel polysulfide hydrogel electrolyte based on low molecular mass organogelator for quasi solid-state quantum dot-sensitized solar cells. Journal of Power Sources, 284, pp.582-587.

Chakrapani, V., Baker, D. and Kamat, P.V., 2011. Understanding the role of the sulfide redox couple (S2–/S n 2–) in quantum dot sensitized solar cells. Journal of the American Chemical Society, 133(24), pp.9607-9615.

Yu, J., Wang, W., Pan, Z., Du, J., Ren, Z., Xue, W. and Zhong, X., 2017. Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte. Journal of Materials Chemistry A, 5(27), pp.14124-14133.

Lee, H., Wang, M., Chen, P., Gamelin, D.R., Zakeeruddin, S.M., Gratzel, M. and Nazeeruddin, M.K., 2009. Efficient CdSe quantum dot sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano letters, 9(12), pp.4221-4227. 43. Chen, H.Y., Lin, L., Yu, X.Y., Qiu, K.Q., Lü, X.Y., Kuang, D.B. and Su, C.Y., 2013. Dextran based highly conductive hydrogel polysulfide electrolyte for efficient quasi-solid-state quantum dot-sensitized solar cells. Electrochimica Acta, 92, pp.117-123.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Nano Trends-A Journal of Nano Technology & Its Applications