Open Access Open Access  Restricted Access Subscription or Fee Access

Simulation of a Wastewater Treatment Plant Designed on a Flow Sheet

José Carlos Becerra Escobedo

Abstract


The residual water results from the alteration of the physicochemical parameters of clean water; so the latter's vocation is lost. The scarcity and importance of this resource requires its immediate recovery by applying the most appropriate corrective procedure. The tertiary wastewater treatment removes traces of organic and inorganic matter. Although effective, this cleaning step is expensive. The simulation of processes helps in the study of the external and internal changes of a system, by altering its variables in a controlled way. ASPEN is a simulator used to model conceptual design, optimization and monitoring processes. The purpose of this work has been to design a flow sheet in Aspen Plus, as well as that of a wastewater treatment plant (WWTP) from an innovative perspective. This study addresses the development of the tertiary treatment of a WWTP in the commercial simulator Aspen Plus V8.8, including the following stages: nitrification tank, chlorination tank, decanter, filter for sludge, and dryer for sludge. The flows resulting from the process obtained through this simulation show the efficiency of the proposed tertiary treatment. However, we recommend the emphasis on the search for simulation in the design of WWTP that favors the optimization of its operation, in favor of the care and conservation of clean water, an invaluable resource.


Keywords


Wastewater, Aspen Plus, flow sheet, simulation, tertiary treatment

Full Text:

PDF

References


Machineni, L. Review on Biological Wastewater Treatment and Resources Recovery: Attached and Suspended Growth Systems. Water Sci Technol. 2019; 80(11): 2013–2026p.

Simate GS, Iyuke SE, Ndlovu S, et al. Human Health Effects of Residual Carbon Nanotubes and Traditional Water Treatment Chemicals in Drinking Water. Environ Int. 2012; 39(1): 38–49p.

Almuktar SAAAN, Abed SN, Scholz M. Wetlands for Wastewater Treatment and Subsequent Recycling of Treated Effluent: A Review. Environ Sci Pollut Res Int. 2018; 25(24): 23595–23623p.

Chahal C, van den Akker B, Young F, et al. Pathogen and Particle Associations in Wastewater: Significance and Implications for Treatment and Disinfection Processes. Adv Appl Microbiol. 2016; 97: 63–119p.

Zhang X, Gu P, Liu Y. Decontamination of Radioactive Wastewater: State of the Art and Challenges Forward. Chemosphere. 2019; 215: 543–553p.

Ibrahim C, Hammami S, Pothier P, et al. The Performance of Biological and Tertiary Wastewater Treatment Procedures for Rotaviruses A Removal. Environ Sci Pollut Res Int. 2020; 27(6): 5718–5729p.

Gómez-Ríos D, Navarro G, Monsalve P, et al. Aspen Plus Simulation Strategies Applied to the Study of Chitin Bioextraction from Shrimp Waste. Food Technol Biotechnol. 2019; 57(2): 238–248p.

Norma Oficial Mexicana NOM-001-ECOL-1996, que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas o bienes nacionales.15.

Norma Oficial Mexicana NOM-002-Semarnat-1996, que establece los límites máximos permisibles de contaminantes en la descarga de aguas residuales a los sistemas de alcantarillado urbano o municipal.

Norma Oficial Mexicana NOM-003-Semarnat-1997, que establece los límites máximos permisibles de contaminantes para las aguas residuales tratadas que se reúsen en servicios públicos.

Norma Oficial Mexicana NOM-004-Semarnat-2001, que establece las especificaciones y límites máximos permisibles de contaminantes en lodos y biosólidos para su aprovechamiento y disposición final.

Vicenteño D. Aumenta número de plantas de tratamiento de agua en el país. 2017. Available in: https://www.excelsior.com.mx/nacional/2017/12/22/1209437 [2017, December 22].

Lahera-Ramón V. Infraestructura sustentable: las plantas de tratamiento de aguas residuales. Quivera. 2010; 12(2): 58–69p.

Pliego-Bravo YS, García-Reyes ME, Urrea-García GR, et al. Simulación del proceso termoquímico sugerido para el aprovechamiento de los lodos residuales como fuente de energía alterna. Revista Mexicana de Ingeniería Química. 2014; 13(2): 619–629p.

Kapoor V, Phan D, Pasha ABMT. Effects of Metal Oxide Nanoparticles on Nitrification in Wastewater Treatment Systems: A Systematic Review. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2018; 53(7): 659–668p.

Bawiec A. Efficiency of Nitrogen and Phosphorus Compounds Removal in Hydroponic Wastewater Treatment Plant. Environ Technol. 2019; 40(16): 2062–2072p.

Lou Z, Li P, Han K. Selenium as a Versatile Center in Fluorescence Probe for the Redox Cycle between HClO Oxidative Stress and H2S Repair. Methods Mol Biol. 2015; 1208: 97–110p.

Blanco-Vargas A, Ramírez-Sierra CF, Duarte-Castañeda M, et al. A Novel Textile Wastewater Treatment Using Ligninolytic Co-Culture and Photocatalysis with TiO2. Universitas Scientiarum. 2018; 23(3): 437–464p.

Rodríguez-González MR, Molina-Burgos J, Jácome-Burgos A, et al. Humedal de flujo vertical para tratamiento terciario del efluente físico-químico de una estación depuradora de aguas residuales domésticas. Ingeniería, investigación y tecnología. 2013; 14(2): 223–235p.

Rebolledo-Lozano GA, Restrepo-Tarquino I. Potential Reuse of Industrial Sludge in the Production of Ceramic Floor Mortar. Ingeniería y competitividad. 2020; 22(1): 8023p.


Refbacks

  • There are currently no refbacks.